
M A N N I N G

Craig Walls

SIXTH EDITION

From the fifth edition of Spring in Action by Craig Walls

“A great tool for understanding such a complex framework.”

—Arnaldo Gabriel Ayala Meyer, Consultores Informáticos S.R.L.

“Excellent coverage of the latest Spring release with complete practical examples.”

—Bill Fly, Brookhaven College

“The go-to book for learning the Spring Framework and an excellent reference guide.”

—Colin Joyce, Cisco

“This has always been my go-to book for Spring. The new edition is a comprehensive update that strikes
the balance between practical instruction and comprehensive theory. It helps you to get started quickly
and follows up with in-depth explanations.”

—Daniel Vaughan, European Bioinfomatics Institute

“The definitive guide to building cloud native applications using Spring.”

—David Witherspoon, Parsons Corporation

“The source of truth for the Spring ecosystem.”

—Eddú Meléndez Gonzales, Scotiabank

“I would highly recommend this book, either for newcomers to the Spring Framework or a seasoned Spring
developer who wishes to deep-dive into the latest features available in the Spring 5 ecosystem.”

—Iain Campbell, Tango Telecom

“Even as a Spring veteran I got lots of practical tips from this book.”

—Jettro Coenradie, Luminis

Spring in Action, Sixth Edition

Spring in Action,
Sixth Edition

CRAIG WALLS

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Joshua White
PO Box 761 Review editor: Mihaela Batinić
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Pamela Hunt
Proofreader: Katie Tennant

Technical proofreaders: Doug Warren and German
Gonzalez-Morris

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617297571
Printed in the United States of America

www.manning.com

brief contents
PART 1 FOUNDATIONAL SPRING ..1

1 ■ Getting started with Spring 3

2 ■ Developing web applications 29

3 ■ Working with data 61

4 ■ Working with nonrelational data 94

5 ■ Securing Spring 113

6 ■ Working with configuration properties 140

PART 2 INTEGRATED SPRING ...161

7 ■ Creating REST services 163

8 ■ Securing REST 186

9 ■ Sending messages asynchronously 210

10 ■ Integrating Spring 243

PART 3 REACTIVE SPRING . ..277

11 ■ Introducing Reactor 279

12 ■ Developing reactive APIs 308
vii

BRIEF CONTENTSviii
13 ■ Persisting data reactively 337

14 ■ Working with RSocket 369

PART 4 DEPLOYED SPRING ..385

15 ■ Working with Spring Boot Actuator 387

16 ■ Administering Spring 423

17 ■ Monitoring Spring with JMX 435

18 ■ Deploying Spring 443

contents
preface xvii
acknowledgments xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 FOUNDATIONAL SPRING1

1 Getting started with Spring 3
1.1 What is Spring? 4
1.2 Initializing a Spring application 6

Initializing a Spring project with Spring Tool Suite 7
Examining the Spring project structure 11

1.3 Writing a Spring application 17
Handling web requests 18 ■ Defining the view 19
Testing the controller 20 ■ Building and running the
application 21 ■ Getting to know Spring Boot DevTools 23
Let’s review 25

1.4 Surveying the Spring landscape 26
The core Spring Framework 26 ■ Spring Boot 26 ■ Spring
Data 27 ■ Spring Security 27 ■ Spring Integration and Spring
Batch 27 ■ Spring Cloud 28 ■ Spring Native 28
ix

CONTENTSx
2 Developing web applications 29
2.1 Displaying information 30

Establishing the domain 31 ■ Creating a controller class 34
Designing the view 38

2.2 Processing form submission 41
2.3 Validating form input 49

Declaring validation rules 50 ■ Performing validation at
form binding 52 ■ Displaying validation errors 54

2.4 Working with view controllers 54
2.5 Choosing a view template library 57

Caching templates 59

3 Working with data 61
3.1 Reading and writing data with JDBC 62

Adapting the domain for persistence 64 ■ Working with
JdbcTemplate 65 ■ Defining a schema and preloading
data 70 ■ Inserting data 73

3.2 Working with Spring Data JDBC 78
Adding Spring Data JDBC to the build 78 ■ Defining
repository interfaces 79 ■ Annotating the domain for
persistence 81

Preloading data with CommandLineRunner 83

3.3 Persisting data with Spring Data JPA 85
Adding Spring Data JPA to the project 85 ■ Annotating the
domain as entities 86 ■ Declaring JPA repositories 89
Customizing repositories 90

4 Working with nonrelational data 94
4.1 Working with Cassandra repositories 95

Enabling Spring Data Cassandra 95 ■ Understanding
Cassandra data modeling 98 ■ Mapping domain types
for Cassandra persistence 99 ■ Writing Cassandra
repositories 105

4.2 Writing MongoDB repositories 106
Enabling Spring Data MongoDB 106 ■ Mapping domain
types to documents 107 ■ Writing MongoDB repository
interfaces 111

CONTENTS xi
5 Securing Spring 113
5.1 Enabling Spring Security 114
5.2 Configuring authentication 116

In-memory user details service 118 ■ Customizing user
authentication 119

5.3 Securing web requests 125
Securing requests 125 ■ Creating a custom login page 128
Enabling third-party authentication 131 ■ Preventing cross-site
request forgery 133

5.4 Applying method-level security 134
5.5 Knowing your user 136

6 Working with configuration properties 140
6.1 Fine-tuning autoconfiguration 141

Understanding Spring’s environment abstraction 142
Configuring a data source 143 ■ Configuring the embedded
server 145 ■ Configuring logging 146 ■ Using special
property values 148

6.2 Creating your own configuration properties 148
Defining configuration property holders 151 ■ Declaring
configuration property metadata 153

6.3 Configuring with profiles 155
Defining profile-specific properties 156 ■ Activating profiles 158
Conditionally creating beans with profiles 159

PART 2 INTEGRATED SPRING161

7 Creating REST services 163
7.1 Writing RESTful controllers 164

Retrieving data from the server 164 ■ Sending data to the
server 170 ■ Updating data on the server 171 ■ Deleting data
from the server 173

7.2 Enabling data-backed services 174
Adjusting resource paths and relation names 177 ■ Paging and
sorting 179

7.3 Consuming REST services 180
GETting resources 182 ■ PUTting resources 183
DELETEing resources 184 ■ POSTing resource data 184

CONTENTSxii
8 Securing REST 186
8.1 Introducing OAuth 2 187
8.2 Creating an authorization server 192
8.3 Securing an API with a resource server 201
8.4 Developing the client 204

9 Sending messages asynchronously 210
9.1 Sending messages with JMS 211

Setting up JMS 211 ■ Sending messages with JmsTemplate 214
Receiving JMS messages 222

9.2 Working with RabbitMQ and AMQP 226
Adding RabbitMQ to Spring 227 ■ Sending messages with
RabbitTemplate 228 ■ Receiving messages from RabbitMQ 232

9.3 Messaging with Kafka 236
Setting up Spring for Kafka messaging 237 ■ Sending messages
with KafkaTemplate 238 ■ Writing Kafka listeners 241

10 Integrating Spring 243
10.1 Declaring a simple integration flow 244

Defining integration flows with XML 246 ■ Configuring
integration flows in Java 247 ■ Using Spring Integration’s
DSL configuration 249

10.2 Surveying the Spring Integration landscape 251
Message channels 252 ■ Filters 253 ■ Transformers 254
Routers 256 ■ Splitters 257 ■ Service activators 260
Gateways 262 ■ Channel adapters 263 ■ Endpoint
modules 265

10.3 Creating an email integration flow 267

PART 3 REACTIVE SPRING ...277

11 Introducing Reactor 279
11.1 Understanding reactive programming 280

Defining Reactive Streams 281

11.2 Getting started with Reactor 283
Diagramming reactive flows 285 ■ Adding Reactor
dependencies 286

CONTENTS xiii
11.3 Applying common reactive operations 287
Creating reactive types 287 ■ Combining reactive types 291
Transforming and filtering reactive streams 295 ■ Performing
logic operations on reactive types 305

12 Developing reactive APIs 308
12.1 Working with Spring WebFlux 309

Introducing Spring WebFlux 310 ■ Writing reactive controllers 312

12.2 Defining functional request handlers 316
12.3 Testing reactive controllers 320

Testing GET requests 320 ■ Testing POST requests 323
Testing with a live server 324

12.4 Consuming REST APIs reactively 325
GETting resources 326 ■ Sending resources 328 ■ Deleting
resources 329 ■ Handling errors 329 ■ Exchanging requests 331

12.5 Securing reactive web APIs 333
Configuring reactive web security 333 ■ Configuring a reactive
user details service 335

13 Persisting data reactively 337
13.1 Working with R2DBC 338

Defining domain entities for R2DBC 339 ■ Defining reactive
repositories 343 ■ Testing R2DBC repositories 345 ■ Defining
an OrderRepository aggregate root service 347

13.2 Persisting document data reactively with MongoDB 353
Defining domain document types 354 ■ Defining reactive MongoDB
repositories 356 ■ Testing reactive MongoDB repositories 357

13.3 Reactively persisting data in Cassandra 361
Defining domain classes for Cassandra persistence 362
Creating reactive Cassandra repositories 365 ■ Testing reactive
Cassandra repositories 366

14 Working with RSocket 369
14.1 Introducing RSocket 370
14.2 Creating a simple RSocket server and client 372

Working with request-response 372 ■ Handling request-stream
messaging 376 ■ Sending fire-and-forget messages 378
Sending messages bidirectionally 379

14.3 Transporting RSocket over WebSocket 382

CONTENTSxiv
PART 4 DEPLOYED SPRING ..385

15 Working with Spring Boot Actuator 387
15.1 Introducing Actuator 388

Configuring Actuator’s base path 389 ■ Enabling and disabling
Actuator endpoints 390

15.2 Consuming Actuator endpoints 391
Fetching essential application information 392 ■ Viewing
configuration details 395 ■ Viewing application activity 403
Tapping runtime metrics 405

15.3 Customizing Actuator 408
Contributing information to the /info endpoint 408 ■ Defining
custom health indicators 414 ■ Registering custom metrics 415
Creating custom endpoints 417

15.4 Securing Actuator 420

16 Administering Spring 423
16.1 Using Spring Boot Admin 424

Creating an Admin server 424 ■ Registering Admin
clients 426

16.2 Exploring the Admin server 427
Viewing general application health and information 428
Watching key metrics 428 ■ Examining environment
properties 429 ■ Viewing and setting logging levels 431

16.3 Securing the Admin server 431
Enabling login in the Admin server 432 ■ Authenticating
with the Actuator 433

17 Monitoring Spring with JMX 435
17.1 Working with Actuator MBeans 435
17.2 Creating your own MBeans 437
17.3 Sending notifications 440

18 Deploying Spring 443
18.1 Weighing deployment options 444
18.2 Building executable JAR files 445

CONTENTS xv
18.3 Building container images 446
Deploying to Kubernetes 449 ■ Enabling graceful shutdown 451
Working with application liveness and readiness 452

18.4 Building and deploying WAR files 455
18.5 The end is where we begin 457

appendix Bootstrapping Spring applications 459

index 479

preface
Spring entered the development world more than 18 years ago with the fundamental
mission of making Java application development easier. Originally, that meant offering a
lightweight alternative to EJB 2.x. But Spring was just getting started. Over the years,
Spring expanded its mission of simplicity to address common development challenges,
including persistence, security, integration, cloud computing, and others.

 Although Spring is closing in on two decades of enabling and simplifying enterprise
Java development, it shows no signs of slowing down. Spring continues to address
Java development challenges, whether it be creating an application deployed to a
conventional application server or a containerized application deployed to a Kuberne-
tes cluster in the cloud. And with Spring Boot providing autoconfiguration, build
dependency help, and runtime monitoring, there has never been a better time to be a
Spring developer!

 This edition of Spring in Action is your guide to Spring and Spring Boot and has been
updated to reflect the best of what both have to offer. Even if you’re new to Spring,
you’ll have your first Spring application up and running before the end of the first chap-
ter. As the book progresses, you’ll learn how to create web applications, work with data,
secure your application, and manage application configuration. Next, you’ll explore
options for integrating your Spring applications with other applications and how to ben-
efit from reactive programming in your Spring applications, including the new RSocket
communication protocol. As the book draws to a close, you’ll see how to prepare your
application for production and learn options for deploying.
xvii

PREFACExviii
 Whether you’re new to Spring or have many years of Spring development to your
credit, this is your next step in your journey. I’m excited for you and happy to bring
this guide to you. I look forward to seeing what you create with Spring!

acknowledgments
One of the most amazing things that Spring and Spring Boot do is automatically pro-
vide all of the foundational plumbing for an application, leaving you as a developer to
focus primarily on the logic that’s unique to your application. Unfortunately, no such
magic exists for writing a book. Or does it?

 At Manning, several people worked their magic to make sure that this book is the
best it can possibly be. Many thanks in particular to my development editor, Jenny
Stout, and to production editor, Deirdre Hiam, copy editor, Pamela Hunt, graphics
editor, Jennifer Houle, and the entire production team for their wonderful work in
making this book a reality.

 As the book was forming, we had several peer reviewers take an early look, give us
feedback, and help make sure that the book stayed on target and covered the right
stuff. For this, my thanks go to Al Pezewski, Alessandro Campeis, Becky Huett, Chris-
tian Kreutzer-Beck, Conor Redmond, David Paccoud, David Torrubia Iñigo, David
Witherspoon German Gonzalez-Morris, Iain Campbell, Jon Guenther, Kevin Liao,
Mark Dechamps, Michael Bright, Philippe Vialatte, Pierre-Michel Ansel, Tony Sweets,
William Fly, and Zorodzayi Mukuya.

 I absolutely must give a shout out to everyone on the Spring engineering team.
You consistently produce some of the most incredible stuff I’ve ever worked with, and
I am proud to consider you my colleagues.

 Many thanks go to my fellow speakers on the No Fluff/Just Stuff tour. I continue to
learn so much from every one of you. And many thanks to those of you who have
xix

ACKNOWLEDGMENTSxx
attended one of my sessions on the NFJS tour; although I’m the one at the front of the
room, I often learn a lot from you, too.

 As I did in the previous edition, I’d like to thank the Phoenicians. You know what
you did.

 Finally, to my beautiful wife, Raymie, the love of my life and my sweetest dream:
thank you for your encouragement and for putting up with yet another book project.
And to my sweet and wonderful girls, Maisy and Madi: I am so proud of you and of the
amazing young ladies you are becoming. I love all of you more than you can possibly
know or words can express.

about this book
Spring in Action, Sixth Edition, was written to equip you to build amazing applications
using the Spring Framework, Spring Boot, and a variety of ancillary members of the
Spring ecosystem. It begins by showing you how to develop web-based, database-
backed Java applications with Spring and Spring Boot. It then expands on the essen-
tials by showing how to integrate with other applications and programs using reactive
types. Finally, it discusses how to ready an application for deployment.

 Although all of the projects in the Spring ecosystem provide excellent documenta-
tion, this book does something that none of the reference documents do: provide a
hands-on, project-driven guide to bringing the elements of Spring together and build
a real application.

Who should read this book

Spring in Action, Sixth Edition, is for Java developers who want to get started with Spring
Boot and the Spring Framework as well as for seasoned Spring developers who want to
go beyond the basics and learn the newest features of Spring.

How this book is organized: A roadmap

The book has four parts spanning 18 chapters. Part 1 covers the foundational topics of
building Spring applications:

 Chapter 1 introduces Spring and Spring Boot and how to initialize a Spring
project. In this chapter, you’ll take the first steps toward building a Spring appli-
cation that you’ll expand on throughout the course of the book.
xxi

ABOUT THIS BOOKxxii
 Chapter 2 discusses building the web layer of an application using Spring MVC.
In this chapter, you’ll build controllers that handle web requests and views that
render information in the web browser.

 Chapter 3 delves into the backend of a Spring application, where data is per-
sisted to a relational database.

 Chapter 4 continues the subject of data persistence by looking at how to persist
data to nonrelational databases, specifically, Cassandra and MongoDB.

 In chapter 5, you’ll use Spring Security to authenticate users and prevent unau-
thorized access to an application.

 Chapter 6 reveals how to configure a Spring application using Spring Boot con-
figuration properties. You’ll also learn how to selectively apply configuration
using profiles.

Part 2 covers topics that help integrate your Spring application with other applications:

 Chapter 7 expands on the discussion of Spring MVC started in chapter 2, by
looking at how to write and consume REST APIs in Spring.

 Chapter 8 shows how to secure the APIs created in chapter 7, with Spring Secu-
rity and OAuth 2.

 Chapter 9 looks at using asynchronous communication to enable a Spring
application to both send and receive messages using the Java Message Service,
RabbitMQ, or Kafka.

 Chapter 10 discusses declarative application integration using the Spring Inte-
gration project.

Part 3 explores the exciting new support for reactive programming in Spring:

 Chapter 11 introduces Project Reactor, the reactive programming library that
underpins Spring 5’s reactive features.

 Chapter 12 revisits REST API development, introducing Spring WebFlux, a new
web framework that borrows much from Spring MVC while offering a new reac-
tive model for web development.

 Chapter 13 takes a look at writing reactive data persistence with Spring Data to
read and write data to Cassandra and Mongo databases.

 Chapter 14 introduces RSocket, a new communication protocol that offers a
reactive alternative to HTTP for creating APIs.

In part 4, you’ll ready an application for production and see how to deploy it:

 Chapter 15 introduces the Spring Boot Actuator, an extension to Spring Boot
that exposes the internals of a running Spring application as REST endpoints.

 In chapter 16, you’ll see how to use Spring Boot Admin to put a user-friendly
browser-based administrative application on top of the Actuator.

 Chapter 17 discusses how to expose and consume Spring beans as JMX MBeans.

ABOUT THIS BOOK xxiii
 Finally, in chapter 18, you’ll see how to deploy your Spring application in a vari-
ety of production environments, including Kubernetes.

In general, developers new to Spring should start with chapter 1 and work through
each chapter sequentially. Experienced Spring developers may prefer to jump in at
any point that interests them. Even so, each chapter builds on the previous one, so
there may be some context missing if you dive into the middle of the book.

About the code

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

 In many cases the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/spring-in-action-sixth-edition. The com-
plete code for the examples in the book is available for download from the Manning
website at https://www.manning.com/books/spring-in-action-sixth-edition, and from
GitHub at github.com/habuma/spring-in-action-6-samples.

Book forum

Purchase of Spring in Action, Sixth Edition, includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://forums.manning.com/
forums/spring-in-action-sixth-edition. You can also learn more about Manning’s
forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://forums.manning.com/forums/spring-in-action-sixth-edition
https://forums.manning.com/forums/spring-in-action-sixth-edition
https://forums.manning.com/forums/about
https://livebook.manning.com/book/spring-in-action-sixth-edition
https://livebook.manning.com/book/spring-in-action-sixth-edition
https://www.manning.com/books/spring-in-action-sixth-edition
https://www.manning.com/books/spring-in-action-sixth-edition
http://github.com/habuma/spring-in-action-6-samples

ABOUT THIS BOOKxxiv
Other online resources

Need additional help?

 The Spring website has several useful getting-started guides (some of which
were written by the author of this book) at https://spring.io/guides.

 The Spring tag at Stack Overflow (https://stackoverflow.com/questions/tagged/
spring) as well as the Spring Boot tag at Stack Overflow (https://stackoverflow
.com/questions/tagged/springboot) are great places to ask questions and help
others with Spring. Helping someone else with their Spring questions is a great
way to learn Spring!

https://spring.io/guides
https://stackoverflow.com/questions/tagged/spring
https://stackoverflow.com/questions/tagged/spring
https://stackoverflow.com/questions/tagged/springboot
https://stackoverflow.com/questions/tagged/springboot
https://stackoverflow.com/questions/tagged/springboot

about the author
CRAIG WALLS is a senior engineer with VMware. He’s a zealous promoter of the Spring
Framework, speaking frequently at local user groups and conferences and writing
about Spring. When he’s not slinging code, Craig is planning his next trip to Disney
World or Disneyland and spending as much time as he can with his wife, two daugh-
ters, three dogs, and a parrot.
xxv

about the cover illustration
The figure on the cover of Spring in Action, 6th edition, is “Le Caraco,” or an inhabitant
of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak, which
boasts an ancient hilltop castle with magnificent views of the Dead Sea and surround-
ing plains. The illustration is taken from a French travel book, Encyclopédie des voyages
by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time, and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
France and abroad.

 The diversity of the drawings in the Encyclopédie des voyages speaks vividly of the dis-
tinctiveness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period, and of every other historic
period except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life. We at Manning celebrate the inventiveness, the initiative, and the
fun of the computer business with book covers based on the rich diversity of regional
life two centuries ago brought back to life by the pictures from this travel guide.
xxvi

Part 1

Foundational Spring

Part 1 of this book will get you started writing a Spring application, learning
the foundations of Spring along the way.

 In chapter 1, I’ll give you a quick overview of Spring and Spring Boot essen-
tials and show you how to initialize a Spring project as you work on building
Taco Cloud, your first Spring application. In chapter 2, you’ll dig deeper into
the Spring MVC and learn how to present model data in the browser and how to
process and validate form input. You’ll also get some tips on choosing a view
template library. You’ll add data persistence to the Taco Cloud application in
chapter 3, where we’ll cover using Spring’s JDBC template and how to insert
data using prepared statements and key holders. Then you’ll see how to declare
JDBC (Java Database Connectivity) and JPA (Java Persistence API) repositories
with Spring Data. Chapter 4 continues the Spring persistence story by looking at
two more Spring Data modules for persisting data to Cassandra and MongoDB.
Chapter 5 covers security for your Spring application, including autoconfiguring
Spring Security, defining custom user storage, customizing the login page, and
securing against cross-site request forgery attacks. To close out part 1, we’ll look at
configuration properties in chapter 6. You’ll learn how to fine-tune autoconfig-
ured beans, apply configuration properties to application components, and work
with Spring profiles.

Getting started
with Spring
Although the Greek philosopher Heraclitus wasn’t well known as a software devel-
oper, he seems to have had a good handle on the subject. He has been quoted as
saying, “The only constant is change.” That statement captures a foundational truth
of software development.

 The way we develop applications today is different than it was a year ago, 5 years
ago, 10 years ago, and certainly 20 years ago, before an initial form of the Spring
Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design
and Development (Wrox, 2002, http://mng.bz/oVjy).

 Back then, the most common types of applications developed were browser-based
web applications, backed by relational databases. Although that type of development
is still relevant—and Spring is well equipped for those kinds of applications—we’re
now also interested in developing applications composed of microservices destined
for the cloud that persist data in a variety of databases. And a new interest in reac-
tive programming aims to provide greater scalability and improved performance
with nonblocking operations.

This chapter covers
 Spring and Spring Boot essentials

 Initializing a Spring project

 An overview of the Spring landscape
3

http://mng.bz/oVjy

4 CHAPTER 1 Getting started with Spring
 As software development evolved, the Spring Framework also changed to address
modern development concerns, including microservices and reactive programming.
The creators of Spring also set out to simplify its development model by introducing
Spring Boot.

 Whether you’re developing a simple database-backed web application or con-
structing a modern application built around microservices, Spring is the framework
that will help you achieve your goals. This chapter is your first step in a journey
through modern application development with Spring.

1.1 What is Spring?
I know you’re probably itching to start writing a Spring application, and I assure you
that before this chapter ends, you’ll have developed a simple one. But first, let me set
the stage with a few basic Spring concepts that will help you understand what makes
Spring tick.

 Any nontrivial application comprises many components, each responsible for its
own piece of the overall application functionality, coordinating with the other applica-
tion elements to get the job done. When the application is run, those components
somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application con-
text, that creates and manages application components. These components, or beans,
are wired together inside the Spring application context to make a complete applica-
tion, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together
to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection
(DI). Rather than have components create and maintain the life cycle of other beans
that they depend on, a dependency-injected application relies on a separate entity
(the container) to create and maintain all components and inject those into the beans
that need them. This is done typically through constructor arguments or property
accessor methods.

 For example, suppose that among an application’s many components, you will
address two: an inventory service (for fetching inventory levels) and a product ser-
vice (for providing basic product information). The product service depends on the
inventory service to be able to provide a complete set of information about prod-
ucts. Figure 1.1 illustrates the relationships between these beans and the Spring
application context.

 On top of its core container, Spring and a full portfolio of related libraries offer a
web framework, a variety of data persistence options, a security framework, integration
with other systems, runtime monitoring, microservice support, a reactive programming
model, and many other features necessary for modern application development.

 Historically, the way you would guide Spring’s application context to wire beans
together was with one or more XML files that described the components and their
relationship to other components.

5What is Spring?
For example, the following XML code declares two beans, an InventoryService bean
and a ProductService bean, and wires the InventoryService bean into Product-
Service via a constructor argument:

<bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

In recent versions of Spring, however, a Java-based configuration is more common.
The following Java-based configuration class is equivalent to the XML configuration:

@Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

The @Configuration annotation indicates to Spring that this is a configuration class
that will provide beans to the Spring application context.

 The configuration’s methods are annotated with @Bean, indicating that the
objects they return should be added as beans in the application context (where, by
default, their respective bean IDs will be the same as the names of the methods that
define them).

Inventory

service

Injected into

Other application components also managed by Spring

Product

service

Spring application context

Figure 1.1 Application
components are managed
and injected into each
other by the Spring
application context.

6 CHAPTER 1 Getting started with Spring
 Java-based configuration offers several benefits over XML-based configuration,
including greater type safety and improved refactorability. Even so, explicit configura-
tion with either Java or XML is necessary only if Spring is unable to automatically con-
figure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring
and component scanning. With component scanning, Spring can automatically discover
components from an application’s classpath and create them as beans in the Spring
application context. With autowiring, Spring automatically injects the components
with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has
gone well beyond component scanning and autowiring. Spring Boot is an extension
of the Spring Framework that offers several productivity enhancements. The most well
known of these enhancements is autoconfiguration, where Spring Boot can make rea-
sonable guesses at what components need to be configured and wired together, based
on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration, but
I can’t. Autoconfiguration is much like the wind—you can see the effects of it, but
there’s no code that I can show you and say “Look! Here’s an example of autoconfigu-
ration!” Stuff happens, components are enabled, and functionality is provided with-
out writing code. It’s this lack of code that’s essential to autoconfiguration and what
makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit
configuration (whether with XML or Java) required to build an application. In fact, by
the time you finish the example in this chapter, you’ll have a working Spring applica-
tion that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine
developing Spring applications without it. For that reason, this book treats Spring and
Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possi-
ble and explicit configuration only when necessary. And, because Spring XML config-
uration is the old-school way of working with Spring, we’ll focus primarily on Spring’s
Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes
the phrase in action, so let’s get moving, so you can start writing your first application
with Spring.

1.2 Initializing a Spring application
Through the course of this book, you’ll create Taco Cloud, an online application
for ordering the most wonderful food created by man—tacos. Of course, you’ll use
Spring, Spring Boot, and a variety of related libraries and frameworks to achieve
this goal.

 You’ll find several options for initializing a Spring application. Although I could
walk you through the steps of manually creating a project directory structure and

7Initializing a Spring application
defining a build specification, that’s wasted time—time better spent writing applica-
tion code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your
application.

 The Spring Initializr is both a browser-based web application and a REST API,
which can produce a skeleton Spring project structure that you can flesh out with
whatever functionality you want. Several ways to use Spring Initializr follow:

 From the web application at http://start.spring.io
 From the command line using the curl command
 From the command line using the Spring Boot command-line interface
 When creating a new project with Spring Tool Suite
 When creating a new project with IntelliJ IDEA
 When creating a new project with Apache NetBeans

Rather than spend several pages of this chapter talking about each one of these
options, I’ve collected those details in the appendix. In this chapter, and throughout
this book, I’ll show you how to create a new project using my favorite option: Spring
Initializr support in Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environ-
ment that comes in the form of extensions for Eclipse, Visual Studio Code, or the
Theia IDE. You can download ready-to-run binaries of Spring Tool Suite at https://
spring.io/tools. Spring Tool Suite offers a handy Spring Boot Dashboard feature that
makes it easy to start, restart, and stop Spring Boot applications from the IDE.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over
to the appendix and substitute the Initializr option that suits you best for the
instructions in the following sections. But know that throughout this book, I may
occasionally reference features specific to Spring Tool Suite, such as the Spring Boot
Dashboard. If you’re not using Spring Tool Suite, you’ll need to adapt those instruc-
tions to fit your IDE.

1.2.1 Initializing a Spring project with Spring Tool Suite

To get started with a new Spring project in Spring Tool Suite, go to the File menu and
select New, and then select Spring Starter Project. Figure 1.2 shows the menu struc-
ture to look for.

Figure 1.2 Starting a new project with the Initializr in Spring Tool Suite

http://start.spring.io
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools

8 CHAPTER 1 Getting started with Spring
Once you select Spring Starter Project, a new project wizard dialog (figure 1.3)
appears. The first page in the wizard asks you for some general project information,
such as the project name, description, and other essential information. If you’re famil-
iar with the contents of a Maven pom.xml file, you’ll recognize most of the fields as
items that end up in a Maven build specification. For the Taco Cloud application, fill
in the dialog as shown in figure 1.3, and then click Next.

Figure 1.3 Specifying general project information for the Taco Cloud application

9Initializing a Spring application
The next page in the wizard lets you select dependencies to add to your project (see
figure 1.4). Notice that near the top of the dialog, you can select on which version of
Spring Boot you want to base your project. This defaults to the most current version
available. It’s generally a good idea to leave it as is unless you need to target a differ-
ent version.

Figure 1.4 Choosing starter dependencies

10 CHAPTER 1 Getting started with Spring
As for the dependencies themselves, you can either expand the various sections and
seek out the desired dependencies manually or search for them in the search box at
the top of the Available list. For the Taco Cloud application, you’ll start with the
dependencies shown in figure 1.4.

 At this point, you can click Finish to generate the project and add it to your work-
space. But if you’re feeling slightly adventurous, click Next one more time to see the
final page of the new starter project wizard, as shown in figure 1.5.

Figure 1.5 Optionally specifying an alternate Initializr address

11Initializing a Spring application
By default, the new project wizard makes a call to the Spring Initializr at http://start
.spring.io to generate the project. Generally, there’s no need to override this default,
which is why you could have clicked Finish on the second page of the wizard. But if
for some reason you’re hosting your own clone of Initializr (perhaps a local copy on
your own machine or a customized clone running inside your company firewall), then
you’ll want to change the Base Url field to point to your Initializr instance before
clicking Finish.

 After you click Finish, the project is downloaded from the Initializr and loaded
into your workspace. Wait a few moments for it to load and build, and then you’ll be
ready to start developing application functionality. But first, let’s take a look at what
the Initializr gave you.

1.2.2 Examining the Spring project structure

After the project loads in the IDE, expand it to see what it contains. Figure 1.6 shows
the expanded Taco Cloud project in Spring Tool Suite.

You may recognize this as a typical Maven or Gradle project structure, where application
source code is placed under src/main/java, test code is placed under src/test/java, and
non-Java resources are placed under src/main/resources. Within that project struc-
ture, you’ll want to take note of the following items:

Figure 1.6 The initial Spring project structure as shown in Spring Tool Suite

http://start.spring.io
http://start.spring.io
http://start.spring.io

12 CHAPTER 1 Getting started with Spring
 mvnw and mvnw.cmd—These are Maven wrapper scripts. You can use these scripts
to build your project, even if you don’t have Maven installed on your machine.

 pom.xml—This is the Maven build specification. We’ll look deeper into this in
a moment.

 TacoCloudApplication.java—This is the Spring Boot main class that boot-
straps the project. We’ll take a closer look at this class in a moment.

 application.properties—This file is initially empty but offers a place where you
can specify configuration properties. We’ll tinker with this file a little in this
chapter, but I’ll postpone a detailed explanation of configuration properties
to chapter 6.

 static—This folder is where you can place any static content (images, stylesheets,
JavaScript, and so forth) that you want to serve to the browser. It’s initially
empty.

 templates—This folder is where you’ll place template files that will be used to
render content to the browser. It’s initially empty, but you’ll add a Thymeleaf
template soon.

 TacoCloudApplicationTests.java—This is a simple test class that ensures that
the Spring application context loads successfully. You’ll add more tests to the
mix as you develop the application.

As the Taco Cloud application grows, you’ll fill in this barebones project structure
with Java code, images, stylesheets, tests, and other collateral that will make your proj-
ect more complete. But in the meantime, let’s dig a little deeper into a few of the
items that Spring Initializr provided.

EXPLORING THE BUILD SPECIFICATION

When you filled out the Initializr form, you specified that your project should be built
with Maven. Therefore, the Spring Initializr gave you a pom.xml file already popu-
lated with the choices you made. The following listing shows the entire pom.xml file
provided by the Initializr.

<?xml version="1.0" encoding="UTF-8"?><project
xmlns="http:/ /maven.apache.org/POM/4.0.0"

 xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0
 https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.5.3</version>
 <relativePath />
 </parent>
 <groupId>sia</groupId>
 <artifactId>taco-cloud</artifactId>

Listing 1.1 The initial Maven build specification

Spring Boot
version

13Initializing a Spring application
 <version>0.0.1-SNAPSHOT</version>
 <name>taco-cloud</name>
 <description>Taco Cloud Example</description>

 <properties>
 <java.version>11</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 <optional>true</optional>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https:/ /repo.spring.io/milestone</url>
 </repository>

Starter
dependencies

Spring Boot
plugin

14 CHAPTER 1 Getting started with Spring
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https:/ /repo.spring.io/milestone</url>
 </pluginRepository>
 </pluginRepositories>

</project>

The first thing to take note of is the <parent> element and, more specifically, its
<version> child. This specifies that your project has spring-boot-starter-parent
as its parent POM. Among other things, this parent POM provides dependency
management for several libraries commonly used in Spring projects. For those
libraries covered by the parent POM, you won’t have to specify a version, because it’s
inherited from the parent. The version, 2.5.6, indicates that you’re using Spring
Boot 2.5.6 and, thus, will inherit dependency management as defined by that ver-
sion of Spring Boot. Among other things, Spring Boot’s dependency management
for version 2.5.6 specifies that the underlying version of the core Spring Framework
will be 5.3.12.

 While we’re on the subject of dependencies, note that there are four dependen-
cies declared under the <dependencies> element. The first three should look some-
what familiar to you. They correspond directly to the Spring Web, Thymeleaf, and
Spring Boot DevTools dependencies that you selected before clicking the Finish but-
ton in the Spring Tool Suite new project wizard. The other dependency is one that
provides a lot of helpful testing capabilities. You didn’t have to check a box for it to be
included because the Spring Initializr assumes (hopefully, correctly) that you’ll be
writing tests.

 You may also notice that all dependencies except for the DevTools dependency
have the word starter in their artifact ID. Spring Boot starter dependencies are spe-
cial in that they typically don’t have any library code themselves but instead transi-
tively pull in other libraries. These starter dependencies offer the following primary
benefits:

 Your build file will be significantly smaller and easier to manage because you
won’t need to declare a dependency on every library you might need.

 You’re able to think of your dependencies in terms of what capabilities they
provide, rather than their library names. If you’re developing a web application,
you’ll add the web starter dependency rather than a laundry list of individual
libraries that enable you to write a web application.

 You’re freed from the burden of worrying about library versions. You can trust
that the versions of the libraries brought in transitively will be compatible for a
given version of Spring Boot. You need to worry only about which version of
Spring Boot you’re using.

15Initializing a Spring application
Finally, the build specification ends with the Spring Boot plugin. This plugin performs
a few important functions, described next:

 It provides a Maven goal that enables you to run the application using Maven.
 It ensures that all dependency libraries are included within the executable JAR

file and available on the runtime classpath.
 It produces a manifest file in the JAR file that denotes the bootstrap class

(TacoCloudApplication, in your case) as the main class for the executable JAR.

Speaking of the bootstrap class, let’s open it up and take a closer look.

BOOTSTRAPPING THE APPLICATION

Because you’ll be running the application from an executable JAR, it’s important to
have a main class that will be executed when that JAR file is run. You’ll also need at
least a minimal amount of Spring configuration to bootstrap the application. That’s
what you’ll find in the TacoCloudApplication class, shown in the following listing.

package tacos;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class TacoCloudApplication {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

}

Although there’s little code in TacoCloudApplication, what’s there packs quite a
punch. One of the most powerful lines of code is also one of the shortest. The
@SpringBootApplication annotation clearly signifies that this is a Spring Boot appli-
cation. But there’s more to @SpringBootApplication than meets the eye.

 @SpringBootApplication is a composite annotation that combines the following
three annotations:

 @SpringBootConfiguration—Designates this class as a configuration class.
Although there’s not much configuration in the class yet, you can add Java-
based Spring Framework configuration to this class if you need to. This annota-
tion is, in fact, a specialized form of the @Configuration annotation.

 @EnableAutoConfiguration—Enables Spring Boot automatic configuration.
We’ll talk more about autoconfiguration later. For now, know that this annota-
tion tells Spring Boot to automatically configure any components that it thinks
you’ll need.

Listing 1.2 The Taco Cloud bootstrap class

Spring Boot
application

Runs the
application

16 CHAPTER 1 Getting started with Spring
 @ComponentScan—Enables component scanning. This lets you declare other
classes with annotations like @Component, @Controller, and @Service to have
Spring automatically discover and register them as components in the Spring
application context.

The other important piece of TacoCloudApplication is the main() method. This is
the method that will be run when the JAR file is executed. For the most part, this
method is boilerplate code; every Spring Boot application you write will have a
method similar or identical to this one (class name differences notwithstanding).

 The main() method calls a static run() method on the SpringApplication class,
which performs the actual bootstrapping of the application, creating the Spring appli-
cation context. The two parameters passed to the run() method are a configuration
class and the command-line arguments. Although it’s not necessary that the configu-
ration class passed to run() be the same as the bootstrap class, this is the most conve-
nient and typical choice.

 Chances are you won’t need to change anything in the bootstrap class. For simple
applications, you might find it convenient to configure one or two other components
in the bootstrap class, but for most applications, you’re better off creating a separate
configuration class for anything that isn’t autoconfigured. You’ll define several config-
uration classes throughout the course of this book, so stay tuned for details.

TESTING THE APPLICATION

Testing is an important part of software development. You can always test your project
manually by building it and then running it from the command line like this:

$./mvnw package
...
$ java -jar target/taco-cloud-0.0.1-SNAPSHOT.jar

Or, because we’re using Spring Boot, the Spring Boot Maven plugin makes it even eas-
ier, as shown next:

$./mvnw spring-boot:run

But manual testing implies that there’s a human involved and thus potential for
human error and inconsistent testing. Automated tests are more consistent and
repeatable.

 Recognizing this, the Spring Initializr gives you a test class to get started. The fol-
lowing listing shows the baseline test class.

package tacos;

import org.junit.jupiter.api.Test;
import org.springframework.boot.test.context.SpringBootTest;

Listing 1.3 A baseline application test

17Writing a Spring application
@SpringBootTest
public class TacoCloudApplicationTests {

 @Test
 public void contextLoads() {
 }

}

There’s not much to be seen in TacoCloudApplicationTests: the one test method in
the class is empty. Even so, this test class does perform an essential check to ensure
that the Spring application context can be loaded successfully. If you make any
changes that prevent the Spring application context from being created, this test fails,
and you can react by fixing the problem.

 The @SpringBootTest annotation tells JUnit to bootstrap the test with Spring Boot
capabilities. Just like @SpringBootApplication, @SpringBootTest is a composite
annotation, which is itself annotated with @ExtendWith(SpringExtension.class), to
add Spring testing capabilities to JUnit 5. For now, though, it’s enough to think of this
as the test class equivalent of calling SpringApplication.run() in a main() method.
Over the course of this book, you’ll see @SpringBootTest several times, and we’ll
uncover some of its power.

 Finally, there’s the test method itself. Although @SpringBootTest is tasked with
loading the Spring application context for the test, it won’t have anything to do if
there aren’t any test methods. Even without any assertions or code of any kind, this
empty test method will prompt the two annotations to do their job and load the
Spring application context. If there are any problems in doing so, the test fails.

 To run this and any test classes from the command line, you can use the following
Maven incantation:

$./mvnw test

At this point, we’ve concluded our review of the code provided by the Spring Initial-
izr. You’ve seen some of the boilerplate foundation that you can use to develop a
Spring application, but you still haven’t written a single line of code. Now it’s time to
fire up your IDE, dust off your keyboard, and add some custom code to the Taco
Cloud application.

1.3 Writing a Spring application
Because you’re just getting started, we’ll start off with a relatively small change to the
Taco Cloud application, but one that will demonstrate a lot of Spring’s goodness. It
seems appropriate that as you’re just starting, the first feature you’ll add to the Taco
Cloud application is a home page. As you add the home page, you’ll create the follow-
ing two code artifacts:

 A controller class that handles requests for the home page
 A view template that defines what the home page looks like

A Spring
Boot test

The test
method

18 CHAPTER 1 Getting started with Spring
And because testing is important, you’ll also write a simple test class to test the home
page. But first things first … let’s write that controller.

1.3.1 Handling web requests

Spring comes with a powerful web framework known as Spring MVC. At the center of
Spring MVC is the concept of a controller, a class that handles requests and responds
with information of some sort. In the case of a browser-facing application, a controller
responds by optionally populating model data and passing the request on to a view to
produce HTML that’s returned to the browser.

 You’re going to learn a lot about Spring MVC in chapter 2. But for now, you’ll
write a simple controller class that handles requests for the root path (for example, /)
and forwards those requests to the home page view without populating any model
data. The following listing shows the simple controller class.

package tacos;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class HomeController {

 @GetMapping("/")
 public String home() {
 return "home";
 }

}

As you can see, this class is annotated with @Controller. On its own, @Controller
doesn’t do much. Its primary purpose is to identify this class as a component for com-
ponent scanning. Because HomeController is annotated with @Controller, Spring’s
component scanning automatically discovers it and creates an instance of Home-
Controller as a bean in the Spring application context.

 In fact, a handful of other annotations (including @Component, @Service, and
@Repository) serve a purpose similar to @Controller. You could have just as effec-
tively annotated HomeController with any of those other annotations, and it would
have still worked the same. The choice of @Controller is, however, more descriptive
of this component’s role in the application.

 The home() method is as simple as controller methods come. It’s annotated with
@GetMapping to indicate that if an HTTP GET request is received for the root path /,
then this method should handle that request. It does so by doing nothing more than
returning a String value of home.

Listing 1.4 The home page controller

The controller

Handles requests
for the root path /

Returns the
view name

19Writing a Spring application
 This value is interpreted as the logical name of a view. How that view is imple-
mented depends on a few factors, but because Thymeleaf is in your classpath, you can
define that template with Thymeleaf.

The template name is derived from the logical view name by prefixing it with /tem-
plates/ and postfixing it with .html. The resulting path for the template is /tem-
plates/home.html. Therefore, you’ll need to place the template in your project at
/src/main/resources/templates/home.html. Let’s create that template now.

1.3.2 Defining the view

In the interest of keeping your home page simple, it should do nothing more than
welcome users to the site. The next listing shows the basic Thymeleaf template that
defines the Taco Cloud home page.

<!DOCTYPE html>
<html xmlns="http:/ /www.w3.org/1999/xhtml"
 xmlns:th="http:/ /www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Welcome to...</h1>

 </body>
</html>

There’s not much to discuss with regard to this template. The only notable line of
code is the one with the tag to display the Taco Cloud logo. It uses a Thymeleaf
th:src attribute and an @{…} expression to reference the image with a context-relative
path. Aside from that, it’s not much more than a Hello World page.

 Let’s talk about that image a bit more. I’ll leave it up to you to define a Taco Cloud
logo that you like. But you’ll need to make sure you place it at the right place within
the project.

Why Thymeleaf?
You may be wondering why I chose Thymeleaf for a template engine. Why not JSP?
Why not FreeMarker? Why not one of several other options?

Put simply, I had to choose something, and I like Thymeleaf and generally prefer it
over those other options. And even though JSP may seem like an obvious choice,
there are some challenges to overcome when using JSP with Spring Boot. I didn’t
want to go down that rabbit hole in chapter 1. Hang tight. We’ll look at other template
options, including JSP, in chapter 2.

Listing 1.5 The Taco Cloud home page template

20 CHAPTER 1 Getting started with Spring
 The image is referenced with the context-relative path /images/TacoCloud.png.
As you’ll recall from our review of the project structure, static content, such as images,
is kept in the /src/main/resources/static folder. That means that the Taco Cloud
logo image must also reside within the project at /src/main/resources/static/
images/TacoCloud.png.

 Now that you’ve got a controller to handle requests for the home page and a view
template to render the home page, you’re almost ready to fire up the application and
see it in action. But first, let’s see how you can write a test against the controller.

1.3.3 Testing the controller

Testing web applications can be tricky when making assertions against the content of
an HTML page. Fortunately, Spring comes with some powerful test support that
makes testing a web application easy.

 For the purposes of the home page, you’ll write a test that’s comparable in complex-
ity to the home page itself. Your test will perform an HTTP GET request for the root path
/ and expect a successful result where the view name is home and the resulting content
contains the phrase “Welcome to….” The following code should do the trick.

package tacos;

import static org.hamcrest.Matchers.containsString;
import static

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.test.web.servlet.MockMvc;

@WebMvcTest(HomeController.class)
public class HomeControllerTest {

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void testHomePage() throws Exception {
 mockMvc.perform(get("/"))
 .andExpect(status().isOk())
 .andExpect(view().name("home"))
 .andExpect(content().string(
 containsString("Welcome to...")));

Listing 1.6 A test for the home page controller

Web test for
HomeController

Injects MockMvc

Performs GET /

Expects HTTP 200

Expects home view

Expects Welcome to…

21Writing a Spring application
 }

}

The first thing you might notice about this test is that it differs slightly from the Taco-
CloudApplicationTests class with regard to the annotations applied to it. Instead of
@SpringBootTest markup, HomeControllerTest is annotated with @WebMvcTest. This
is a special test annotation provided by Spring Boot that arranges for the test to run in
the context of a Spring MVC application. More specifically, in this case, it arranges for
HomeController to be registered in Spring MVC so that you can send requests to it.

 @WebMvcTest also sets up Spring support for testing Spring MVC. Although it could
be made to start a server, mocking the mechanics of Spring MVC is sufficient for your
purposes. The test class is injected with a MockMvc object for the test to drive the mockup.

 The testHomePage() method defines the test you want to perform against the
home page. It starts with the MockMvc object to perform an HTTP GET request for /
(the root path). From that request, it sets the following expectations:

 The response should have an HTTP 200 (OK) status.
 The view should have a logical name of home.
 The rendered view should contain the text “Welcome to….”

You can run the test in your IDE of choice or with Maven like this:

$ mvnw test

If, after the MockMvc object performs the request, any of those expectations aren’t
met, then the test will fail. But your controller and view template are written to satisfy
those expectations, so the test should pass with flying colors—or at least with some
shade of green indicating a passing test.

 The controller has been written, the view template created, and you have a passing
test. It seems that you’ve implemented the home page successfully. But even though
the test passes, there’s something slightly more satisfying with seeing the results in a
browser. After all, that’s how Taco Cloud customers are going to see it. Let’s build the
application and run it.

1.3.4 Building and running the application

Just as we have several ways to initialize a Spring application, we also have several ways
to run one. If you like, you can flip over to the appendix to read about some of the
more common ways to run a Spring Boot application.

 Because you chose to use Spring Tool Suite to initialize and work on the project,
you have a handy feature called the Spring Boot Dashboard available to help you run
your application inside the IDE. The Spring Boot Dashboard appears as a tab, typi-
cally near the bottom left of the IDE window. Figure 1.7 shows an annotated screen-
shot of the Spring Boot Dashboard.

 I don’t want to spend much time going over everything the Spring Boot Dash-
board does, although figure 1.7 covers some of the most useful details. The important

22 CHAPTER 1 Getting started with Spring
thing to know right now is how to use it to run the Taco Cloud application. Make sure
taco-cloud application is highlighted in the list of projects (it’s the only application
shown in figure 1.7), and then click the start button (the left-most button with both a
green triangle and a red square). The application should start right up.

 As the application starts, you’ll see some Spring ASCII art fly by in the console, fol-
lowed by some log entries describing the steps as the application starts. Before the log-
ging stops, you’ll see a log entry saying Tomcat started on port(s): 8080 (http), which
means that you’re ready to point your web browser at the home page to see the fruits
of your labor.

 Wait a minute. Tomcat started? When did you deploy the application to a Tomcat
web server?

 Spring Boot applications tend to bring everything they need with them and don’t
need to be deployed to some application server. You never deployed your application
to Tomcat—Tomcat is a part of your application! (I’ll describe the details of how Tom-
cat became part of your application in section 1.3.6.)

 Now that the application has started, point your web browser to http:/ /local-
host:8080 (or click the globe button in the Spring Boot Dashboard) and you should
see something like figure 1.8. Your results may be different if you designed your own
logo image, but it shouldn’t vary much from what you see in figure 1.8.

Starts/restarts the selected
project in debug mode

Opens a web browser on
the running applicationStops the

selected
projectStarts/restarts the

selected project

List of Spring
Boot projects Indicates that the

project has Spring Boot
DevTools enabled

Indicates that the
running application
is listening on port 8080

Opens the console
on the running
application

Figure 1.7 Highlights of the Spring Boot Dashboard

23Writing a Spring application
It may not be much to look at. But this isn’t exactly a book on graphic design. The
humble appearance of the home page is more than sufficient for now. And it provides
you a solid start on getting to know Spring.

 One thing I’ve glossed over up until now is DevTools. You selected it as a dependency
when initializing your project. It appears as a dependency in the generated pom.xml file.
And the Spring Boot Dashboard even shows that the project has DevTools enabled.
But what is DevTools, and what does it do for you? Let’s take a quick survey of a couple
of DevTools’s most useful features.

1.3.5 Getting to know Spring Boot DevTools

As its name suggests, DevTools provides Spring developers with some handy develop-
ment-time tools. Among those are the following:

 Automatic application restart when code changes
 Automatic browser refresh when browser-destined resources (such as templates,

JavaScript, stylesheets, and so on) change
 Automatic disabling of template caches
 Built in H2 Console, if the H2 database is in use

It’s important to understand that DevTools isn’t an IDE plugin, nor does it require
that you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA,
and NetBeans. Furthermore, because it’s intended only for development purposes, it’s
smart enough to disable itself when deploying in a production setting. We’ll discuss
how it does this when you get around to deploying your application in chapter 18. For

Figure 1.8 The Taco Cloud home page

24 CHAPTER 1 Getting started with Spring
now, let’s focus on the most useful features of Spring Boot DevTools, starting with
automatic application restart.

AUTOMATIC APPLICATION RESTART

With DevTools as part of your project, you’ll be able to make changes to Java code and
properties files in the project and see those changes applied after a brief moment.
DevTools monitors for changes, and when it sees something has changed, it automati-
cally restarts the application.

 More precisely, when DevTools is active, the application is loaded into two separate
class loaders in the Java virtual machine (JVM). One class loader is loaded with your
Java code, property files, and pretty much anything that’s in the src/main/ path of the
project. These are items that are likely to change frequently. The other class loader is
loaded with dependency libraries, which aren’t likely to change as often.

 When a change is detected, DevTools reloads only the class loader containing your
project code and restarts the Spring application context but leaves the other class
loader and the JVM intact. Although subtle, this strategy affords a small reduction in
the time it takes to start the application.

 The downside of this strategy is that changes to dependencies won’t be available in
automatic restarts. That’s because the class loader containing dependency libraries
isn’t automatically reloaded. Any time you add, change, or remove a dependency in
your build specification, you’ll need to do a hard restart of the application for those
changes to take effect.

AUTOMATIC BROWSER REFRESH AND TEMPLATE CACHE DISABLE

By default, template options such as Thymeleaf and FreeMarker are configured to
cache the results of template parsing so that templates don’t need to be reparsed with
every request they serve. This is great in production, because it buys a bit of a perfor-
mance benefit.

 Cached templates, however, are not so great at development time. They make it
impossible to make changes to the templates while the application is running and see
the results after refreshing the browser. Even if you’ve made changes, the cached tem-
plate will still be in use until you restart the application.

 DevTools addresses this issue by automatically disabling all template caching. Make
as many changes as you want to your templates and know that you’re only a browser
refresh away from seeing the results.

 But if you’re like me, you don’t even want to be burdened with the effort of click-
ing the browser’s refresh button. It’d be much nicer if you could make the changes
and witness the results in the browser immediately. Fortunately, DevTools has some-
thing special for those of us who are too lazy to click a refresh button.

 DevTools automatically enables a LiveReload server (http://livereload.com/) along
with your application. By itself, the LiveReload server isn’t very useful. But when cou-
pled with a corresponding LiveReload browser plugin, it causes your browser to auto-
matically refresh when changes are made to templates, images, stylesheets, JavaScript,
and so on—in fact, almost anything that ends up being served to your browser.

http://livereload.com/

25Writing a Spring application
 LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers.
(Sorry, Internet Explorer and Edge fans.) Visit http://livereload.com/extensions/ to
find information on how to install LiveReload for your browser.

BUILT-IN H2 CONSOLE

Although your project doesn’t yet use a database, that will change in chapter 3. If you
choose to use the H2 database for development, DevTools will also automatically
enable an H2 console that you can access from your web browser. You only need to
point your web browser to http:/ /localhost:8080/h2-console to gain insight into the
data your application is working with.

 At this point, you’ve written a complete, albeit simple, Spring application. You’ll
expand on it throughout the course of the book. But now is a good time to step back
and review what you’ve accomplished and how Spring played a part.

1.3.6 Let’s review

Think back on how you got to this point. In short, you’ve taken the following steps to
build your Taco Cloud Spring application:

 You created an initial project structure using the Spring Initializr.
 You wrote a controller class to handle the home page request.
 You defined a view template to render the home page.
 You wrote a simple test class to prove your work.

Seems pretty straightforward, doesn’t it? With the exception of the first step to boot-
strap the project, each action you’ve taken has been keenly focused on achieving the
goal of producing a home page.

 In fact, almost every line of code you’ve written is aimed toward that goal. Not count-
ing Java import statements, I count only two lines of code in your controller class and no
lines in the view template that are Spring-specific. And although the bulk of the test
class utilizes Spring testing support, it seems a little less invasive in the context of a test.

 That’s an important benefit of developing with Spring. You can focus on the code
that meets the requirements of an application, rather than on satisfying the demands
of a framework. Although you’ll no doubt need to write some framework-specific code
from time to time, it’ll usually be only a small fraction of your codebase. As I said
before, Spring (with Spring Boot) can be considered the frameworkless framework.

 How does this even work? What is Spring doing behind the scenes to make sure
your application needs are met? To understand what Spring is doing, let’s start by
looking at the build specification.

 In the pom.xml file, you declared a dependency on the Web and Thymeleaf start-
ers. These two dependencies transitively brought in a handful of other dependencies,
including the following:

 Spring’s MVC framework
 Embedded Tomcat
 Thymeleaf and the Thymeleaf layout dialect

http://livereload.com/extensions/

26 CHAPTER 1 Getting started with Spring
It also brought Spring Boot’s autoconfiguration library along for the ride. When the
application starts, Spring Boot autoconfiguration detects those libraries and automati-
cally performs the following tasks:

 Configures the beans in the Spring application context to enable Spring MVC
 Configures the embedded Tomcat server in the Spring application context
 Configures a Thymeleaf view resolver for rendering Spring MVC views with

Thymeleaf templates

In short, autoconfiguration does all the grunt work, leaving you to focus on writing
code that implements your application functionality. That’s a pretty sweet arrange-
ment, if you ask me!

 Your Spring journey has just begun. The Taco Cloud application only touched on a
small portion of what Spring has to offer. Before you take your next step, let’s survey
the Spring landscape and see what landmarks you’ll encounter on your journey.

1.4 Surveying the Spring landscape
To get an idea of the Spring landscape, look no further than the enormous list of
checkboxes on the full version of the Spring Initializr web form. It lists over 100
dependency choices, so I won’t try to list them all here or to provide a screenshot. But
I encourage you to take a look. In the meantime, I’ll mention a few of the highlights.

1.4.1 The core Spring Framework

As you might expect, the core Spring Framework is the foundation of everything else
in the Spring universe. It provides the core container and dependency injection
framework. But it also provides a few other essential features.

 Among these is Spring MVC, Spring’s web framework. You’ve already seen how to
use Spring MVC to write a controller class to handle web requests. What you’ve not yet
seen, however, is that Spring MVC can also be used to create REST APIs that produce
non-HTML output. We’re going to dig more into Spring MVC in chapter 2 and then
take another look at how to use it to create REST APIs in chapter 7.

 The core Spring Framework also offers some elemental data persistence support,
specifically, template-based JDBC support. You’ll see how to use JdbcTemplate in
chapter 3.

 Spring includes support for reactive-style programming, including a new reactive
web framework called Spring WebFlux that borrows heavily from Spring MVC. You’ll
look at Spring’s reactive programming model in part 3 and Spring WebFlux specifi-
cally in chapter 12.

1.4.2 Spring Boot

We’ve already seen many of the benefits of Spring Boot, including starter dependen-
cies and autoconfiguration. Be certain that we’ll use as much of Spring Boot as possi-
ble throughout this book and avoid any form of explicit configuration, unless it’s

27Surveying the Spring landscape
absolutely necessary. But in addition to starter dependencies and autoconfiguration,
Spring Boot also offers the following other useful features:

 The Actuator provides runtime insight into the inner workings of an applica-
tion, including metrics, thread dump information, application health, and envi-
ronment properties available to the application.

 Flexible specification of environment properties.
 Additional testing support on top of the testing assistance found in the core

framework.

What’s more, Spring Boot offers an alternative programming model based on Groovy
scripts that’s called the Spring Boot CLI (command-line interface). With the Spring
Boot CLI, you can write entire applications as a collection of Groovy scripts and run
them from the command line. We won’t spend much time with the Spring Boot CLI,
but we’ll touch on it on occasion when it fits our needs.

 Spring Boot has become such an integral part of Spring development that I can’t
imagine developing a Spring application without it. Consequently, this book takes a
Spring Boot–centric view, and you might catch me using the word Spring when I’m
referring to something that Spring Boot is doing.

1.4.3 Spring Data

Although the core Spring Framework comes with basic data persistence support,
Spring Data provides something quite amazing: the ability to define your application’s
data repositories as simple Java interfaces, using a naming convention when defining
methods to drive how data is stored and retrieved.

 What’s more, Spring Data is capable of working with several different kinds of data-
bases, including relational (via JDBC or JPA), document (Mongo), graph (Neo4j),
and others. You’ll use Spring Data to help create repositories for the Taco Cloud
application in chapter 3.

1.4.4 Spring Security

Application security has always been an important topic, and it seems to become more
important every day. Fortunately, Spring has a robust security framework in Spring
Security.

 Spring Security addresses a broad range of application security needs, including
authentication, authorization, and API security. Although the scope of Spring Security
is too large to be properly covered in this book, we’ll touch on some of the most com-
mon use cases in chapters 5 and 12.

1.4.5 Spring Integration and Spring Batch

At some point, most applications will need to integrate with other applications or even
with other components of the same application. Several patterns of application inte-
gration have emerged to address these needs. Spring Integration and Spring Batch
provide the implementation of these patterns for Spring applications.

28 CHAPTER 1 Getting started with Spring
 Spring Integration addresses real-time integration where data is processed as it’s
made available. In contrast, Spring Batch addresses batched integration where data is
allowed to collect for a time until some trigger (perhaps a time trigger) signals that it’s
time for the batch of data to be processed. You’ll explore Spring Integration in chap-
ter 10.

1.4.6 Spring Cloud

The application development world is entering a new era where we’ll no longer
develop our applications as single-deployment, unit monoliths and will instead com-
pose applications from several individual deployment units known as microservices.

 Microservices are a hot topic, addressing several practical development and run-
time concerns. In doing so, however, they bring to fore their own challenges. Those
challenges are met head-on by Spring Cloud, a collection of projects for developing
cloud-native applications with Spring.

 Spring Cloud covers a lot of ground, and it’d be impossible to cover it all in this
book. For a complete discussion of Spring Cloud, I suggest taking a look at Cloud
Native Spring in Action by Thomas Vitale (Manning, 2020, www.manning.com/books/
cloud-native-spring-in-action).

1.4.7 Spring Native

A relatively new development in Spring is the Spring Native project. This experimen-
tal project enables compilation of Spring Boot projects into native executables using
the GraalVM native-image compiler, resulting in images that start significantly faster
and have a lighter footprint.

 For more information on Spring Native, see https://github.com/spring-projects-
experimental/spring-native.

Summary
 Spring aims to make developer challenges easy, like creating web applications,

working with databases, securing applications, and microservices.
 Spring Boot builds on top of Spring to make Spring even easier with simplified

dependency management, automatic configuration, and runtime insights.
 Spring applications can be initialized using the Spring Initializr, which is web-

based and supported natively in most Java development environments.
 The components, commonly referred to as beans, in a Spring application con-

text can be declared explicitly with Java or XML, discovered by component
scanning, or automatically configured with Spring Boot autoconfigurations.

https://github.com/spring-projects-experimental/spring-native
https://github.com/spring-projects-experimental/spring-native
http://www.manning.com/books/cloud-native-spring-in-action
http://www.manning.com/books/cloud-native-spring-in-action
http://www.manning.com/books/cloud-native-spring-in-action

Developing web
applications
First impressions are important. Curb appeal can sell a house long before the
home buyer enters the door. A car’s cherry red paint job will turn more heads than
what’s under the hood. And literature is replete with stories of love at first sight.
What’s inside is important, but what’s outside—what’s seen first—-is also important.

 The applications you’ll build with Spring will do all kinds of things, including
crunching data, reading information from a database, and interacting with other
applications. But the first impression your application users will get comes from the
user interface. And in many applications, that UI is a web application presented in
a browser.

 In chapter 1, you created your first Spring MVC controller to display your applica-
tion home page. But Spring MVC can do far more than simply display static content.
In this chapter, you’ll develop the first major bit of functionality in your Taco Cloud
application—the ability to design custom tacos. In doing so, you’ll dig deeper into
Spring MVC, and you’ll see how to display model data and process form input.

This chapter covers
 Presenting model data in the browser

 Processing and validating form input

 Choosing a view template library
29

30 CHAPTER 2 Developing web applications
2.1 Displaying information
Fundamentally, Taco Cloud is a place where you can order tacos online. But more
than that, Taco Cloud wants to enable its customers to express their creative side and
design custom tacos from a rich palette of ingredients.

 Therefore, the Taco Cloud web application needs a page that displays the selection
of ingredients for taco artists to choose from. The ingredient choices may change at
any time, so they shouldn’t be hardcoded into an HTML page. Rather, the list of avail-
able ingredients should be fetched from a database and handed over to the page to be
displayed to the customer.

 In a Spring web application, it’s a controller’s job to fetch and process data. And
it’s a view’s job to render that data into HTML that will be displayed in the browser.
You’re going to create the following components in support of the taco creation page:

 A domain class that defines the properties of a taco ingredient
 A Spring MVC controller class that fetches ingredient information and passes it

along to the view
 A view template that renders a list of ingredients in the user’s browser

The relationship between these components is illustrated in figure 2.1.

Because this chapter focuses on Spring’s web framework, we’ll defer any of the data-
base stuff to chapter 3. For now, the controller is solely responsible for providing the

Request

Design

view

Request

Ingredients

Web browser

HTML

Taco

design

controller

Figure 2.1 A typical Spring MVC request flow

31Displaying information
ingredients to the view. In chapter 3, you’ll rework the controller to collaborate with a
repository that fetches ingredients data from a database.

 Before you write the controller and view, let’s hammer out the domain type that
represents an ingredient. This will establish a foundation on which you can develop
your web components.

2.1.1 Establishing the domain

An application’s domain is the subject area that it addresses—the ideas and concepts
that influence the understanding of the application.1 In the Taco Cloud application,
the domain includes such objects as taco designs, the ingredients that those designs
are composed of, customers, and taco orders placed by the customers. Figure 2.2
shows these entities and how they are related.

To get started, we’ll focus on taco ingredients. In your domain, taco ingredients are
fairly simple objects. Each has a name as well as a type so that it can be visually catego-
rized (proteins, cheeses, sauces, and so on). Each also has an ID by which it can easily
and unambiguously be referenced. The following Ingredient class defines the domain
object you need.

package tacos;

import lombok.Data;

1 For a much more in-depth discussion of application domains, I suggest Eric Evans’s Domain-Driven Design
(Addison-Wesley Professional, 2003).

Listing 2.1 Defining taco ingredients

name: String

id: String

name: String

type: String

Ingredient
WRAP

PROTEIN

VEGGIES

CHEESE

SAUCE

<<enumeration>>

Ingredient.Type

TacoOrder

deliveryName: String

deliveryStreet: String

deliveryCity: String

deliveryState: String

deliveryZip: String

ccNumber: String

ccExpiration: String

ccCVV: String

Taco

Figure 2.2 The Taco Cloud domain

32 CHAPTER 2 Developing web applications
@Data
public class Ingredient {

 private final String id;
 private final String name;
 private final Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, this is a run-of-the-mill Java domain class, defining the three proper-
ties needed to describe an ingredient. Perhaps the most unusual thing about the
Ingredient class as defined in listing 2.1 is that it seems to be missing the usual set of
getter and setter methods, not to mention useful methods like equals(), hashCode(),
toString(), and others.

 You don’t see them in the listing partly to save space, but also because you’re using
an amazing library called Lombok to automatically generate those methods at com-
pile time so that they will be available at run time. In fact, the @Data annotation at the
class level is provided by Lombok and tells Lombok to generate all of those missing
methods as well as a constructor that accepts all final properties as arguments. By
using Lombok, you can keep the code for Ingredient slim and trim.

 Lombok isn’t a Spring library, but it’s so incredibly useful that I find it hard to
develop without it. Plus, it’s a lifesaver when I need to keep code examples in a book
short and sweet.

 To use Lombok, you’ll need to add it as a dependency in your project. If you’re
using Spring Tool Suite, it’s an easy matter of right-clicking on the pom.xml file and
selecting Add Starters from the Spring context menu. The same selection of depen-
dencies you were given in chapter 1 (in figure 1.4) will appear, giving you a chance to
add or change your selected dependencies. Find Lombok under Developer Tools,
make sure it’s selected, and click OK; Spring Tool Suite automatically adds it to your
build specification.

 Alternatively, you can manually add it with the following entry in pom.xml:

<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
</dependency>

If you decide to manually add Lombok to your build, you’ll also want to exclude it
from the Spring Boot Maven plugin in the <build> section of the pom.xml file:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>

33Displaying information
 <configuration>
 <excludes>
 <exclude>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
</build>

Lombok’s magic is applied at compile time, so there’s no need for it to be available at
run time. Excluding it like this keeps it out of the resulting JAR or WAR file.

 The Lombok dependency provides you with Lombok annotations (such as @Data)
at development time and with automatic method generation at compile time. But you’ll
also need to add Lombok as an extension in your IDE, or your IDE will complain, with
errors about missing methods and final properties that aren’t being set. Visit https://
projectlombok.org/ to find out how to install Lombok in your IDE of choice.

I think you’ll find Lombok to be very useful, but know that it’s optional. You don’t
need it to develop Spring applications, so if you’d rather not use it, feel free to write
those missing methods by hand. Go ahead … I’ll wait.

 Ingredients are the essential building blocks of a taco. To capture how those ingre-
dients are brought together, we’ll define the Taco domain class, as shown next.

package tacos;
import java.util.List;
import lombok.Data;

@Data
public class Taco {

 private String name;

 private List<Ingredient> ingredients;

}

Why are there so many errors in my code?
It bears repeating that when using Lombok, you must install the Lombok plugin into
your IDE. Without it, your IDE won’t be aware that Lombok is providing getters, set-
ters, and other methods and will complain that they are missing.

Lombok is supported in a number of popular IDEs, including Eclipse, Spring Tool
Suite, IntelliJ IDEA, and Visual Studio Code. Visit https://projectlombok .org/ for more
information on how to install the Lombok plugin into your IDE.

Listing 2.2 A domain object defining a taco design

https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/

34 CHAPTER 2 Developing web applications
As you can see, Taco is a straightforward Java domain object with a couple of proper-
ties. Like Ingredient, the Taco class is annotated with @Data to have Lombok auto-
matically generate essential JavaBean methods for you at compile time.

 Now that we have defined Ingredient and Taco, we need one more domain class
that defines how customers specify the tacos that they want to order, along with pay-
ment and delivery information. That’s the job of the TacoOrder class, shown here.

package tacos;
import java.util.List;
import java.util.ArrayList;
import lombok.Data;

@Data
public class TacoOrder {

 private String deliveryName;
 private String deliveryStreet;
 private String deliveryCity;
 private String deliveryState;
 private String deliveryZip;
 private String ccNumber;
 private String ccExpiration;
 private String ccCVV;

 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }
}

Aside from having more properties than either Ingredient or Taco, there’s nothing
particularly new to discuss about TacoOrder. It’s a simple domain class with nine prop-
erties: five for delivery information, three for payment information, and one that is
the list of Taco objects that make up the order. There’s also an addTaco() method
that’s added for the convenience of adding tacos to the order.

 Now that the domain types are defined, we’re ready to put them to work. Let’s add
a few controllers to handle web requests in the application.

2.1.2 Creating a controller class

Controllers are the major players in Spring’s MVC framework. Their primary job is to
handle HTTP requests and either hand off a request to a view to render HTML
(browser-displayed) or write data directly to the body of a response (RESTful). In this
chapter, we’re focusing on the kinds of controllers that use views to produce content
for web browsers. When we get to chapter 7, we’ll look at writing controllers that han-
dle requests in a REST API.

Listing 2.3 A domain object for taco orders

35Displaying information
 For the Taco Cloud application, you need a simple controller that will do the
following:

 Handle HTTP GET requests where the request path is /design
 Build a list of ingredients
 Hand off the request and the ingredient data to a view template to be rendered

as HTML and sent to the requesting web browser

The DesignTacoController class in the next listing addresses those requirements.

package tacos.web;

import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.SessionAttributes;

import lombok.extern.slf4j.Slf4j;
import tacos.Ingredient;
import tacos.Ingredient.Type;
import tacos.Taco;

@Slf4j
@Controller
@RequestMapping("/design")
@SessionAttributes("tacoOrder")
public class DesignTacoController {

@ModelAttribute
public void addIngredientsToModel(Model model) {
 List<Ingredient> ingredients = Arrays.asList(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("COTO", "Corn Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CARN", "Carnitas", Type.PROTEIN),
 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES),
 new Ingredient("LETC", "Lettuce", Type.VEGGIES),
 new Ingredient("CHED", "Cheddar", Type.CHEESE),
 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE),
 new Ingredient("SLSA", "Salsa", Type.SAUCE),
 new Ingredient("SRCR", "Sour Cream", Type.SAUCE)
);

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),

Listing 2.4 The beginnings of a Spring controller class

36 CHAPTER 2 Developing web applications
 filterByType(ingredients, type));
 }
 }

 @ModelAttribute(name = "tacoOrder")
 public TacoOrder order() {
 return new TacoOrder();
 }

 @ModelAttribute(name = "taco")
 public Taco taco() {
 return new Taco();
 }

 @GetMapping
 public String showDesignForm() {
 return "design";
 }

 private Iterable<Ingredient> filterByType(
 List<Ingredient> ingredients, Type type) {
 return ingredients
 .stream()
 .filter(x -> x.getType().equals(type))
 .collect(Collectors.toList());
 }

}

The first thing to note about DesignTacoController is the set of annotations applied
at the class level. The first, @Slf4j, is a Lombok-provided annotation that, at compi-
lation time, will automatically generate an SLF4J (Simple Logging Facade for Java,
https://www.slf4j.org/) Logger static property in the class. This modest annotation
has the same effect as if you were to explicitly add the following lines within the class:

private static final org.slf4j.Logger log =
 org.slf4j.LoggerFactory.getLogger(DesignTacoController.class);

You’ll make use of this Logger a little later.
 The next annotation applied to DesignTacoController is @Controller. This

annotation serves to identify this class as a controller and to mark it as a candidate for
component scanning, so that Spring will discover it and automatically create an
instance of DesignTacoController as a bean in the Spring application context.

 DesignTacoController is also annotated with @RequestMapping. The @Request-
Mapping annotation, when applied at the class level, specifies the kind of requests that
this controller handles. In this case, it specifies that DesignTacoController will han-
dle requests whose path begins with /design.

 Finally, you see that DesignTacoController is annotated with @SessionAttributes
("tacoOrder"). This indicates that the TacoOrder object that is put into the model a
little later in the class should be maintained in session. This is important because the

https://www.slf4j.org/

37Displaying information
creation of a taco is also the first step in creating an order, and the order we create will
need to be carried in the session so that it can span multiple requests.

HANDLING A GET REQUEST

The class-level @RequestMapping specification is refined with the @GetMapping annota-
tion that adorns the showDesignForm() method. @GetMapping, paired with the class-
level @RequestMapping, specifies that when an HTTP GET request is received for /design,
Spring MVC will call showDesignForm() to handle the request.

 @GetMapping is just one member of a family of request-mapping annotations.
Table 2.1 lists all of the request-mapping annotations available in Spring MVC.

When showDesignForm() handles a GET request for /design, it doesn’t really do
much. The main thing it does is return a String value of "design", which is the logi-
cal name of the view that will be used to render the model to the browser. But before
it does that, it also populates the given Model with an empty Taco object under a key
whose name is "design". This will enable the form to have a blank slate on which to
create a taco masterpiece.

 It would seem that a GET request to /design doesn’t do much. But on the contrary,
there’s a bit more involved than what is found in the showDesignForm() method.
You’ll also notice a method named addIngredientsToModel() that is annotated with
@ModelAttribute. This method will also be invoked when a request is handled and
will construct a list of Ingredient objects to be put into the model. The list is hard-
coded for now. When we get to chapter 3, you’ll pull the list of available taco ingredi-
ents from a database.

 Once the list of ingredients is ready, the next few lines of addIngredientsTo-
Model() filters the list by ingredient type using a helper method named filterBy-
Type(). A list of ingredient types is then added as an attribute to the Model object that
will be passed into showDesignForm(). Model is an object that ferries data between a
controller and whatever view is charged with rendering that data. Ultimately, data
that’s placed in Model attributes is copied into the servlet request attributes, where the
view can find them and use them to render a page in the user’s browser.

Table 2.1 Spring MVC request-mapping annotations

Annotation Description

@RequestMapping General-purpose request handling

@GetMapping Handles HTTP GET requests

@PostMapping Handles HTTP POST requests

@PutMapping Handles HTTP PUT requests

@DeleteMapping Handles HTTP DELETE requests

@PatchMapping Handles HTTP PATCH requests

38 CHAPTER 2 Developing web applications
 Following addIngredientsToModel() are two more methods that are also anno-
tated with @ModelAttribute. These methods are much simpler and create only a new
TacoOrder and Taco object to place into the model. The TacoOrder object, referred to
earlier in the @SessionAttributes annotation, holds state for the order being built as
the user creates tacos across multiple requests. The Taco object is placed into the
model so that the view rendered in response to the GET request for /design will have a
non-null object to display.

 Your DesignTacoController is really starting to take shape. If you were to run
the application now and point your browser at the /design path, the DesignTaco-
Controller’s showDesignForm() and addIngredientsToModel() would be engaged,
placing ingredients and an empty Taco into the model before passing the request on
to the view. But because you haven’t defined the view yet, the request would take a
horrible turn, resulting in an HTTP 500 (Internal Server Error) error. To fix that, let’s
switch our attention to the view where the data will be decorated with HTML to be
presented in the user’s web browser.

2.1.3 Designing the view

After the controller is finished with its work, it’s time for the view to get going. Spring
offers several great options for defining views, including JavaServer Pages (JSP),
Thymeleaf, FreeMarker, Mustache, and Groovy-based templates. For now, we’ll use
Thymeleaf, the choice we made in chapter 1 when starting the project. We’ll consider
a few of the other options in section 2.5.

 We have already added Thymeleaf as a dependency in chapter 1. At run time,
Spring Boot autoconfiguration sees that Thymeleaf is in the classpath and automati-
cally creates the beans that support Thymeleaf views for Spring MVC.

 View libraries such as Thymeleaf are designed to be decoupled from any particular
web framework. As such, they’re unaware of Spring’s model abstraction and are
unable to work with the data that the controller places in Model. But they can work
with servlet request attributes. Therefore, before Spring hands the request over to a
view, it copies the model data into request attributes that Thymeleaf and other view-
templating options have ready access to.

 Thymeleaf templates are just HTML with some additional element attributes that
guide a template in rendering request data. For example, if there were a request attri-
bute whose key is "message", and you wanted it to be rendered into an HTML <p> tag
by Thymeleaf, you’d write the following in your Thymeleaf template:

<p th:text="${message}">placeholder message</p>

When the template is rendered into HTML, the body of the <p> element will be
replaced with the value of the servlet request attribute whose key is "message". The
th:text attribute is a Thymeleaf namespace attribute that performs the replace-
ment. The ${} operator tells it to use the value of a request attribute ("message", in
this case).

39Displaying information
 Thymeleaf also offers another attribute, th:each, that iterates over a collection of
elements, rendering the HTML once for each item in the collection. This attribute
will come in handy as you design your view to list taco ingredients from the model. For
example, to render just the list of "wrap" ingredients, you can use the following snip-
pet of HTML:

<h3>Designate your wrap:</h3>
<div th:each="ingredient : ${wrap}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

</div>

Here, you use the th:each attribute on the <div> tag to repeat rendering of the <div>
once for each item in the collection found in the wrap request attribute. On each iter-
ation, the ingredient item is bound to a Thymeleaf variable named ingredient.

 Inside the <div> element are a check box <input> element and a element
to provide a label for the check box. The check box uses Thymeleaf’s th:value to set
the rendered <input> element’s value attribute to the value found in the ingredient’s
id property. The th:field attribute ultimately sets the <input> element’s name attri-
bute and is used to remember whether or not the check box is checked. When we add
validation later, this will ensure that the check box maintains its state should the form
need to be redisplayed after a validation error. The element uses th:text to
replace the "INGREDIENT" placeholder text with the value of the ingredient’s name
property.

 When rendered with actual model data, one iteration of that <div> loop might
look like this:

<div>
 <input name="ingredients" type="checkbox" value="FLTO" />
 Flour Tortilla

</div>

Ultimately, the preceding Thymeleaf snippet is just part of a larger HTML form
through which your taco artist users will submit their tasty creations. The complete
Thymeleaf template, including all ingredient types and the form, is shown in the fol-
lowing listing.

<!DOCTYPE html>
<html xmlns="http:/ /www.w3.org/1999/xhtml"
 xmlns:th="http:/ /www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

Listing 2.5 The complete design-a-taco page

40 CHAPTER 2 Developing web applications
 <body>
 <h1>Design your taco!</h1>

 <form method="POST" th:object="${taco}">
 <div class="grid">
 <div class="ingredient-group" id="wraps">
 <h3>Designate your wrap:</h3>
 <div th:each="ingredient : ${wrap}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="proteins">
 <h3>Pick your protein:</h3>
 <div th:each="ingredient : ${protein}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="cheeses">
 <h3>Choose your cheese:</h3>
 <div th:each="ingredient : ${cheese}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="veggies">
 <h3>Determine your veggies:</h3>
 <div th:each="ingredient : ${veggies}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="sauces">
 <h3>Select your sauce:</h3>
 <div th:each="ingredient : ${sauce}">
 <input th:field="*{ingredients}" type="checkbox"
 th:value="${ingredient.id}"/>
 INGREDIENT

 </div>
 </div>
 </div>

 <div>

41Processing form submission
 <h3>Name your taco creation:</h3>
 <input type="text" th:field="*{name}"/>

 <button>Submit Your Taco</button>
 </div>
 </form>
 </body>
</html>

As you can see, you repeat the <div> snippet for each of the types of ingredients, and
you include a Submit button and field where the user can name their creation.

 It’s also worth noting that the complete template includes the Taco Cloud logo
image and a <link> reference to a stylesheet.2 In both cases, Thymeleaf’s @{} operator
is used to produce a context-relative path to the static artifacts that these tags are ref-
erencing. As you learned in chapter 1, static content in a Spring Boot application is
served from the /static directory at the root of the classpath.

 Now that your controller and view are complete, you can fire up the application to
see the fruits of your labor. We have many ways to run a Spring Boot application. In
chapter 1, I showed you how to run the application by clicking the Start button in the
Spring Boot Dashboard. No matter how you fire up the Taco Cloud application, once
it starts, point your browser to http:/ /localhost:8080/design. You should see a page
that looks something like figure 2.3.

 It’s looking good! A taco artist visiting your site is presented with a form containing
a palette of taco ingredients from which they can create their masterpiece. But what
happens when they click the Submit Your Taco button?

 Your DesignTacoController isn’t yet ready to accept taco creations. If the design
form is submitted, the user will be presented with an error. (Specifically, it will be an
HTTP 405 error: Request Method “POST” Not Supported.) Let’s fix that by writing
some more controller code that handles form submission.

2.2 Processing form submission
If you take another look at the <form> tag in your view, you can see that its method
attribute is set to POST. Moreover, the <form> doesn’t declare an action attribute. This
means that when the form is submitted, the browser will gather all the data in the
form and send it to the server in an HTTP POST request to the same path for which a
GET request displayed the form—the /design path.

 Therefore, you need a controller handler method on the receiving end of that
POST request. You need to write a new handler method in DesignTacoController that
handles a POST request for /design.

2 The contents of the stylesheet aren’t relevant to our discussion; it contains only styling to present the ingre-
dients in two columns instead of one long list of ingredients.

42 CHAPTER 2 Developing web applications
In listing 2.4, you used the @GetMapping annotation to specify that the showDesign-
Form() method should handle HTTP GET requests for /design. Just like @GetMapping
handles GET requests, you can use @PostMapping to handle POST requests. For han-
dling taco design submissions, add the processTaco() method in the following listing
to DesignTacoController.

Figure 2.3 The rendered taco design page

43Processing form submission
@PostMapping
public String processTaco(Taco taco,
 @ModelAttribute TacoOrder tacoOrder) {
 tacoOrder.addTaco(taco);
 log.info("Processing taco: {}", taco);

 return "redirect:/orders/current";
}

As applied to the processTaco() method, @PostMapping coordinates with the class-level
@RequestMapping to indicate that processTaco() should handle POST requests for
/design. This is precisely what you need to process a taco artist’s submitted creations.

 When the form is submitted, the fields in the form are bound to properties of a
Taco object (whose class is shown in the next listing) that’s passed as a parameter into
processTaco(). From there, the processTaco() method can do whatever it wants
with the Taco object. In this case, it adds the Taco to the TacoOrder object passed as a
parameter to the method and then logs it. The @ModelAttribute applied to the Taco-
Order parameter indicates that it should use the TacoOrder object that was placed
into the model via the @ModelAttribute-annotated order() method shown earlier in
listing 2.4.

 If you look back at the form in listing 2.5, you’ll see several checkbox elements, all
with the name ingredients, and a text input element named name. Those fields in the
form correspond directly to the ingredients and name properties of the Taco class.

 The name field on the form needs to capture only a simple textual value. Thus the
name property of Taco is of type String. The ingredients check boxes also have textual
values, but because zero or many of them may be selected, the ingredients property
that they’re bound to is a List<Ingredient> that will capture each of the chosen
ingredients.

 But wait. If the ingredients check boxes have textual (e.g., String) values, but the
Taco object represents a list of ingredients as List<Ingredient>, then isn’t there a
mismatch? How can a textual list like ["FLTO", "GRBF", "LETC"] be bound to a list of
Ingredient objects that are richer objects containing not only an ID but also a
descriptive name and ingredient type?

 That’s where a converter comes in handy. A converter is any class that implements
Spring’s Converter interface and implements its convert() method to take one
value and convert it to another. To convert a String to an Ingredient, we’ll use the
IngredientByIdConverter as follows.

package tacos.web;

import java.util.HashMap;
import java.util.Map;

Listing 2.6 Handling POST requests with @PostMapping

Listing 2.7 Converting strings to ingredients

44 CHAPTER 2 Developing web applications
import org.springframework.core.convert.converter.Converter;
import org.springframework.stereotype.Component;

import tacos.Ingredient;
import tacos.Ingredient.Type;

@Component
public class IngredientByIdConverter implements Converter<String, Ingredient> {

 private Map<String, Ingredient> ingredientMap = new HashMap<>();

 public IngredientByIdConverter() {
 ingredientMap.put("FLTO",
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 ingredientMap.put("COTO",
 new Ingredient("COTO", "Corn Tortilla", Type.WRAP));
 ingredientMap.put("GRBF",
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 ingredientMap.put("CARN",
 new Ingredient("CARN", "Carnitas", Type.PROTEIN));
 ingredientMap.put("TMTO",
 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES));
 ingredientMap.put("LETC",
 new Ingredient("LETC", "Lettuce", Type.VEGGIES));
 ingredientMap.put("CHED",
 new Ingredient("CHED", "Cheddar", Type.CHEESE));
 ingredientMap.put("JACK",
 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE));
 ingredientMap.put("SLSA",
 new Ingredient("SLSA", "Salsa", Type.SAUCE));
 ingredientMap.put("SRCR",
 new Ingredient("SRCR", "Sour Cream", Type.SAUCE));
 }

 @Override
 public Ingredient convert(String id) {
 return ingredientMap.get(id);
 }

}

Because we don’t yet have a database from which to pull Ingredient objects, the con-
structor of IngredientByIdConverter creates a Map keyed on a String that is the
ingredient ID and whose values are Ingredient objects. In chapter 3, we’ll adapt this
converter to pull the ingredient data from a database instead of being hardcoded like
this. The convert() method then simply takes a String that is the ingredient ID and
uses it to look up the Ingredient from the map.

 Notice that the IngredientByIdConverter is annotated with @Component to make
it discoverable as a bean in the Spring application context. Spring Boot autoconfigu-
ration will discover this, and any other Converter beans, and will automatically regis-
ter them with Spring MVC to be used when the conversion of request parameters to
bound properties is needed.

45Processing form submission
 For now, the processTaco() method does nothing with the Taco object. In fact, it
doesn’t do much of anything at all. That’s OK. In chapter 3, you’ll add some per-
sistence logic that will save the submitted Taco to a database.

 Just as with the showDesignForm() method, processTaco() finishes by returning a
String value. And just like showDesignForm(), the value returned indicates a view
that will be shown to the user. But what’s different is that the value returned from
processTaco() is prefixed with "redirect:", indicating that this is a redirect view.
More specifically, it indicates that after processTaco() completes, the user’s browser
should be redirected to the relative path /orders/current.

 The idea is that after creating a taco, the user will be redirected to an order form
from which they can place an order to have their taco creations delivered. But you
don’t yet have a controller that will handle a request for /orders/current.

 Given what you now know about @Controller, @RequestMapping, and @Get-
Mapping, you can easily create such a controller. It might look something like the fol-
lowing listing.

package tacos.web;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

import lombok.extern.slf4j.Slf4j;
import tacos.TacoOrder;

@Slf4j
@Controller
@RequestMapping("/orders")
@SessionAttributes("tacoOrder")
public class OrderController {

 @GetMapping("/current")
 public String orderForm() {
 return "orderForm";
 }

}

Once again, you use Lombok’s @Slf4j annotation to create a free SLF4J Logger
object at compile time. You’ll use this Logger in a moment to log the details of the
order that’s submitted.

 The class-level @RequestMapping specifies that any request-handling methods in
this controller will handle requests whose path begins with /orders. When combined
with the method-level @GetMapping, it specifies that the orderForm() method will han-
dle HTTP GET requests for /orders/current.

Listing 2.8 A controller to present a taco order form

46 CHAPTER 2 Developing web applications
 As for the orderForm() method itself, it’s extremely basic, only returning a logical
view name of orderForm. Once you have a way to persist taco creations to a database in
chapter 3, you’ll revisit this method and modify it to populate the model with a list of
Taco objects to be placed in the order.

 The orderForm view is provided by a Thymeleaf template named orderForm.html,
which is shown next.

<!DOCTYPE html>
<html xmlns="http:/ /www.w3.org/1999/xhtml"
 xmlns:th="http:/ /www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>

 <form method="POST" th:action="@{/orders}" th:object="${tacoOrder}">
 <h1>Order your taco creations!</h1>

 <h3>Your tacos in this order:</h3>
 <a th:href="@{/design}" id="another">Design another taco

 <li th:each="taco : ${tacoOrder.tacos}">
 taco name

 <h3>Deliver my taco masterpieces to...</h3>
 <label for="deliveryName">Name: </label>
 <input type="text" th:field="*{deliveryName}"/>

 <label for="deliveryStreet">Street address: </label>
 <input type="text" th:field="*{deliveryStreet}"/>

 <label for="deliveryCity">City: </label>
 <input type="text" th:field="*{deliveryCity}"/>

 <label for="deliveryState">State: </label>
 <input type="text" th:field="*{deliveryState}"/>

 <label for="deliveryZip">Zip code: </label>
 <input type="text" th:field="*{deliveryZip}"/>

 <h3>Here's how I'll pay...</h3>
 <label for="ccNumber">Credit Card #: </label>

Listing 2.9 A taco order form view

47Processing form submission
 <input type="text" th:field="*{ccNumber}"/>

 <label for="ccExpiration">Expiration: </label>
 <input type="text" th:field="*{ccExpiration}"/>

 <label for="ccCVV">CVV: </label>
 <input type="text" th:field="*{ccCVV}"/>

 <input type="submit" value="Submit Order"/>
 </form>
 </body>
</html>

For the most part, the orderForm.html view is typical HTML/Thymeleaf content, with
very little of note. It starts by listing the tacos that were added to the order. It uses
Thymeleaf’s th:each to cycle through the order’s tacos property as it creates the list.
Then it renders the order form.

 But notice that the <form> tag here is different from the <form> tag used in list-
ing 2.5 in that it also specifies a form action. Without an action specified, the form
would submit an HTTP POST request back to the same URL that presented the form.
But here, you specify that the form should be POSTed to /orders (using Thymeleaf’s
@{…} operator for a context-relative path).

 Therefore, you’re going to need to add another method to your OrderController
class that handles POST requests for /orders. You won’t have a way to persist orders
until the next chapter, so you’ll keep it simple here—something like what you see in
the next listing.

@PostMapping
public String processOrder(TacoOrder order,
 SessionStatus sessionStatus) {
 log.info("Order submitted: {}", order);
 sessionStatus.setComplete();

 return "redirect:/";
}

When the processOrder() method is called to handle a submitted order, it’s given a
TacoOrder object whose properties are bound to the submitted form fields. Taco-
Order, much like Taco, is a fairly straightforward class that carries order information.

 In the case of this processOrder() method, the TacoOrder object is simply logged.
We’ll see how to persist it to a database in the next chapter. But before process-
Order() is done, it also calls setComplete() on the SessionStatus object passed in as
a parameter. The TacoOrder object was initially created and placed into the session

Listing 2.10 Handling a taco order submission

48 CHAPTER 2 Developing web applications
when the user created their first taco. By calling setComplete(), we are ensuring
that the session is cleaned up and ready for a new order the next time the user cre-
ates a taco.

 Now that you’ve developed an OrderController and the order form view, you’re
ready to try it out. Open your browser to http:/ /localhost:8080/design, select some
ingredients for your taco, and click the Submit Your Taco button. You should see a
form similar to what’s shown in figure 2.4.

Figure 2.4 The taco order form

49Validating form input
Fill in some fields in the form, and press the Submit Order button. As you do, keep an
eye on the application logs to see your order information. When I tried it, the log
entry looked something like this (reformatted to fit the width of this page):

Order submitted: TacoOrder(deliveryName=Craig Walls, deliveryStreet=1234 7th
Street, deliveryCity=Somewhere, deliveryState=Who knows?,
deliveryZip=zipzap, ccNumber=Who can guess?, ccExpiration=Some day,
ccCVV=See-vee-vee, tacos=[Taco(name=Awesome Sauce, ingredients=[
Ingredient(id=FLTO, name=Flour Tortilla, type=WRAP), Ingredient(id=GRBF,
name=Ground Beef, type=PROTEIN), Ingredient(id=CHED, name=Cheddar,
type=CHEESE), Ingredient(id=TMTO, name=Diced Tomatoes, type=VEGGIES),
Ingredient(id=SLSA, name=Salsa, type=SAUCE), Ingredient(id=SRCR,
name=Sour Cream, type=SAUCE)]), Taco(name=Quesoriffic, ingredients=
[Ingredient(id=FLTO, name=Flour Tortilla, type=WRAP), Ingredient(id=CHED,
name=Cheddar, type=CHEESE), Ingredient(id=JACK, name=Monterrey Jack,
type=CHEESE), Ingredient(id=TMTO, name=Diced Tomatoes, type=VEGGIES),
Ingredient(id=SRCR,name=Sour Cream, type=SAUCE)])])

It appears that the processOrder() method did its job, handling the form submis-
sion by logging details about the order. But if you look carefully at the log entry
from my test order, you can see that it let a little bit of bad information get in. Most
of the fields in the form contained data that couldn’t possibly be correct. Let’s add
some validation to ensure that the data provided at least resembles the kind of infor-
mation required.

2.3 Validating form input
When designing a new taco creation, what if the user selects no ingredients or fails to
specify a name for their creation? When submitting the order, what if the user fails
to fill in the required address fields? Or what if they enter a value into the credit card
field that isn’t even a valid credit card number?

 As things stand now, nothing will stop the user from creating a taco without any
ingredients or with an empty delivery address, or even submitting the lyrics to their
favorite song as the credit card number. That’s because you haven’t yet specified how
those fields should be validated.

 One way to perform form validation is to litter the processTaco() and process-
Order() methods with a bunch of if/then blocks, checking each and every field to
ensure that it meets the appropriate validation rules. But that would be cumbersome
and difficult to read and debug.

 Fortunately, Spring supports the JavaBean Validation API (also known as JSR 303;
https://jcp.org/en/jsr/detail?id=303). This makes it easy to declare validation rules as
opposed to explicitly writing declaration logic in your application code.

 To apply validation in Spring MVC, you need to

 Add the Spring Validation starter to the build.
 Declare validation rules on the class that is to be validated: specifically, the

Taco class.

https://jcp.org/en/jsr/detail?id=303

50 CHAPTER 2 Developing web applications
 Specify that validation should be performed in the controller methods that
require validation: specifically, the DesignTacoController’s processTaco()
method and the OrderController’s processOrder() method.

 Modify the form views to display validation errors.

The Validation API offers several annotations that can be placed on properties of
domain objects to declare validation rules. Hibernate’s implementation of the Valida-
tion API adds even more validation annotations. Both can be added to a project by
adding the Spring Validation starter to the build. The Validation check box under
I/O in the Spring Boot Starter wizard will get the job done, but if you prefer manually
editing your build, the following entry in the Maven pom.xml file will do the trick:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

Or if you’re using Gradle, then this is the dependency you’ll need:

implementation 'org.springframework.boot:spring-boot-starter-validation'

With the validation starter in place, let’s see how you can apply a few annotations to
validate a submitted Taco or TacoOrder.

2.3.1 Declaring validation rules

For the Taco class, you want to ensure that the name property isn’t empty or null and
that the list of selected ingredients has at least one item. The following listing shows
an updated Taco class that uses @NotNull and @Size to declare those validation rules.

package tacos;
import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import lombok.Data;

@Data
public class Taco {

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

Is the validation starter required?
In earlier versions of Spring Boot, the Spring Validation starter was automatically
included with the web starter. Starting with Spring Boot 2.3.0, you’ll need to explicitly
add it to your build if you intend to apply validation.

Listing 2.11 Adding validation to the Taco domain class

51Validating form input
 @NotNull
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients;

}

You’ll notice that in addition to requiring that the name property isn’t null, you
declare that it should have a value that’s at least five characters in length.

 When it comes to declaring validation on submitted taco orders, you must apply
annotations to the TacoOrder class. For the address properties, you want to be sure
that the user doesn’t leave any of the fields blank. For that, you’ll use the @NotBlank
annotation.

 Validation of the payment fields, however, is a bit more exotic. You need to ensure
not only that the ccNumber property isn’t empty but also that it contains a value that
could be a valid credit card number. The ccExpiration property must conform to a
format of MM/YY (two-digit month and year), and the ccCVV property needs to be a
three-digit number. To achieve this kind of validation, you need to use a few other Java-
Bean Validation API annotations and borrow a validation annotation from the Hiber-
nate Validator collection of annotations. The following listing shows the changes
needed to validate the TacoOrder class.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.NotBlank;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import java.util.List;
import java.util.ArrayList;
import lombok.Data;

@Data
public class TacoOrder {

 @NotBlank(message="Delivery name is required")
 private String deliveryName;

 @NotBlank(message="Street is required")
 private String deliveryStreet;

 @NotBlank(message="City is required")
 private String deliveryCity;

 @NotBlank(message="State is required")
 private String deliveryState;

 @NotBlank(message="Zip code is required")
 private String deliveryZip;

Listing 2.12 Validating order fields

52 CHAPTER 2 Developing web applications
 @CreditCardNumber(message="Not a valid credit card number")
 private String ccNumber;

 @Pattern(regexp="^(0[1-9]|1[0-2])([\\/])([2-9][0-9])$",
 message="Must be formatted MM/YY")
 private String ccExpiration;

 @Digits(integer=3, fraction=0, message="Invalid CVV")
 private String ccCVV;

 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }
}

As you can see, the ccNumber property is annotated with @CreditCardNumber. This
annotation declares that the property’s value must be a valid credit card number that
passes the Luhn algorithm check (https://creditcardvalidator.org/articles/luhn-
algorithm). This prevents user mistakes and deliberately bad data but doesn’t guaran-
tee that the credit card number is actually assigned to an account or that the account
can be used for charging.

 Unfortunately, there’s no ready-made annotation for validating the MM/YY format
of the ccExpiration property. I’ve applied the @Pattern annotation, providing it with
a regular expression that ensures that the property value adheres to the desired for-
mat. If you’re wondering how to decipher the regular expression, I encourage you to
check out the many online regular expression guides, including http://www.regular-
expressions.info/. Regular expression syntax is a dark art and certainly outside the
scope of this book. Finally, we annotate the ccCVV property with @Digits to ensure
that the value contains exactly three numeric digits.

 All of the validation annotations include a message attribute that defines the mes-
sage you’ll display to the user if the information they enter doesn’t meet the require-
ments of the declared validation rules.

2.3.2 Performing validation at form binding

Now that you’ve declared how a Taco and TacoOrder should be validated, we need to
revisit each of the controllers, specifying that validation should be performed when
the forms are POSTed to their respective handler methods.

 To validate a submitted Taco, you need to add the JavaBean Validation API’s
@Valid annotation to the Taco argument of the DesignTacoController’s process-
Taco() method, as shown next.

https://creditcardvalidator.org/articles/luhn-algorithm
https://creditcardvalidator.org/articles/luhn-algorithm
http://www.regular-expressions.info/
http://www.regular-expressions.info/

53Validating form input
import javax.validation.Valid;
import org.springframework.validation.Errors;

...

 @PostMapping
 public String processTaco(
 @Valid Taco taco, Errors errors,
 @ModelAttribute TacoOrder tacoOrder) {

 if (errors.hasErrors()) {
 return "design";
 }

 tacoOrder.addTaco(taco);
 log.info("Processing taco: {}", taco);

 return "redirect:/orders/current";
 }

The @Valid annotation tells Spring MVC to perform validation on the submitted Taco
object after it’s bound to the submitted form data and before the processTaco()
method is called. If there are any validation errors, the details of those errors will be
captured in an Errors object that’s passed into processTaco(). The first few lines of
processTaco() consult the Errors object, asking its hasErrors() method if there are
any validation errors. If there are, the method concludes without processing the Taco
and returns the "design" view name so that the form is redisplayed.

 To perform validation on submitted TacoOrder objects, similar changes are also
required in the processOrder() method of OrderController, as shown in the next
code listing.

@PostMapping
public String processOrder(@Valid TacoOrder order, Errors errors,
 SessionStatus sessionStatus) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 log.info("Order submitted: {}", order);
 sessionStatus.setComplete();

 return "redirect:/";
}

In both cases, the method will be allowed to process the submitted data if there are no
validation errors. If there are validation errors, the request will be forwarded to the
form view to give the user a chance to correct their mistakes.

Listing 2.13 Validating a POSTed Taco

Listing 2.14 Validating a POSTed TacoOrder

54 CHAPTER 2 Developing web applications
 But how will the user know what mistakes require correction? Unless you call out
the errors on the form, the user will be left guessing about how to successfully sub-
mit the form.

2.3.3 Displaying validation errors

Thymeleaf offers convenient access to the Errors object via the fields property and
with its th:errors attribute. For example, to display validation errors on the credit
card number field, you can add a element that uses these error references to
the order form template, as follows.

<label for="ccNumber">Credit Card #: </label>
 <input type="text" th:field="*{ccNumber}"/>
 <span class="validationError"
 th:if="${#fields.hasErrors('ccNumber')}"
 th:errors="*{ccNumber}">CC Num Error

Aside from a class attribute that can be used to style the error so that it catches the
user’s attention, the element uses a th:if attribute to decide whether to dis-
play the . The fields property’s hasErrors() method checks whether there
are any errors in the ccNumber field. If so, the will be rendered.

 The th:errors attribute references the ccNumber field and, assuming errors exist
for that field, it will replace the placeholder content of the element with the
validation message.

 If you were to sprinkle similar tags around the order form for the other
fields, you might see a form that looks like figure 2.5 when you submit invalid informa-
tion. The errors indicate that the name, city, and ZIP code fields have been left blank
and that all of the payment fields fail to meet the validation criteria.

 Now your Taco Cloud controllers not only display and capture input, but
they also validate that the information meets some basic validation rules. Let’s step
back and reconsider the HomeController from chapter 1, looking at an alternative
implementation.

2.4 Working with view controllers
Thus far, you’ve written three controllers for the Taco Cloud application. Although
each controller serves a distinct purpose in the functionality of the application, they
all pretty much adhere to the following programming model:

 They’re all annotated with @Controller to indicate that they’re controller
classes that should be automatically discovered by Spring component scanning
and instantiated as beans in the Spring application context.

 All but HomeController are annotated with @RequestMapping at the class level
to define a baseline request pattern that the controller will handle.

Listing 2.15 Displaying validation errors

55Working with view controllers
 They all have one or more methods that are annotated with @GetMapping or
@PostMapping to provide specifics on which methods should handle which
kinds of requests.

Most of the controllers you’ll write will follow that pattern. But when a controller is
simple enough that it doesn’t populate a model or process input—as is the case with
your HomeController—there’s another way that you can define the controller. Have a

Figure 2.5 Validation errors displayed on the order form

56 CHAPTER 2 Developing web applications
look at the next listing to see how you can declare a view controller—a controller that
does nothing but forward the request to a view.

package tacos.web;

import org.springframework.context.annotation.Configuration;
import

org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

The most significant thing to notice about WebConfig is that it implements the Web-
MvcConfigurer interface. WebMvcConfigurer defines several methods for configuring
Spring MVC. Even though it’s an interface, it provides default implementations of all
the methods, so you need to override only the methods you need. In this case, you
override addViewControllers().

 The addViewControllers() method is given a ViewControllerRegistry that you
can use to register one or more view controllers. Here, you call addViewController()
on the registry, passing in “/”, which is the path for which your view controller will
handle GET requests. That method returns a ViewControllerRegistration object, on
which you immediately call setViewName() to specify home as the view that a request
for “/” should be forwarded to.

 And just like that, you’ve been able to replace HomeController with a few lines in a
configuration class. You can now delete HomeController, and the application should
still behave as it did before. The only other change required is to revisit Home-
ControllerTest from chapter 1, removing the reference to HomeController from the
@WebMvcTest annotation, so that the test class will compile without errors.

 Here, you’ve created a new WebConfig configuration class to house the view control-
ler declaration. But any configuration class can implement WebMvcConfigurer and over-
ride the addViewController method. For instance, you could have added the same view
controller declaration to the bootstrap TacoCloudApplication class like this:

@SpringBootApplication
public class TacoCloudApplication implements WebMvcConfigurer {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

Listing 2.16 Declaring a view controller

57Choosing a view template library
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

By extending an existing configuration class, you can avoid creating a new configura-
tion class, keeping your project artifact count down. But I prefer creating a new con-
figuration class for each kind of configuration (web, data, security, and so on),
keeping the application bootstrap configuration clean and simple.

 Speaking of view controllers—and more generically, the views that controllers for-
ward requests to—so far you’ve been using Thymeleaf for all of your views. I like
Thymeleaf a lot, but maybe you prefer a different template model for your application
views. Let’s have a look at Spring’s many supported view options.

2.5 Choosing a view template library
For the most part, your choice of a view template library is a matter of personal taste.
Spring is flexible and supports many common templating options. With only a few
small exceptions, the template library you choose will itself have no idea that it’s even
working with Spring.3

 Table 2.2 catalogs the template options supported by Spring Boot autoconfiguration.

Generally speaking, you select the view template library you want, add it as a depen-
dency in your build, and start writing templates in the /templates directory (under
the src/main/resources directory in a Maven or Gradle project). Spring Boot detects
your chosen template library and automatically configures the components required
for it to serve views for your Spring MVC controllers.

 You’ve already done this with Thymeleaf for the Taco Cloud application. In chap-
ter 1, you selected the Thymeleaf check box when initializing the project. This
resulted in Spring Boot’s Thymeleaf starter being included in the pom.xml file. When

3 One such exception is Thymeleaf’s Spring Security dialect, which we’ll talk about in chapter 5.

Table 2.2 Supported template options

Template Spring Boot starter dependency

FreeMarker spring-boot-starter-freemarker

Groovy templates spring-boot-starter-groovy-templates

JavaServer Pages (JSP) None (provided by Tomcat or Jetty)

Mustache spring-boot-starter-mustache

Thymeleaf spring-boot-starter-thymeleaf

58 CHAPTER 2 Developing web applications
the application starts up, Spring Boot autoconfiguration detects the presence of
Thymeleaf and automatically configures the Thymeleaf beans for you. All you had to
do was start writing templates in /templates.

 If you’d rather use a different template library, you simply select it at project ini-
tialization or edit your existing project build to include the newly chosen template
library.

 For example, let’s say you wanted to use Mustache instead of Thymeleaf. No prob-
lem. Just visit the project pom.xml file and replace this

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

with this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mustache</artifactId>
</dependency>

Of course, you’d need to make sure that you write all the templates with Mustache syn-
tax instead of Thymeleaf tags. The specifics of working with Mustache (or any of the
template language choices) is well outside of the scope of this book, but to give you an
idea of what to expect, here’s a snippet from a Mustache template that will render one
of the ingredient groups in the taco design form:

<h3>Designate your wrap:</h3>
{{#wrap}}
<div>
 <input name="ingredients" type="checkbox" value="{{id}}" />
 {{name}}

</div>
{{/wrap}}

This is the Mustache equivalent of the Thymeleaf snippet in section 2.1.3. The
{{#wrap}} block (which concludes with {{/wrap}}) iterates through a collection in
the request attribute whose key is wrap and renders the embedded HTML for each
item. The {{id}} and {{name}} tags reference the id and name properties of the item
(which should be an Ingredient).

 You’ll notice in table 2.2 that JSP doesn’t require any special dependency in the
build. That’s because the servlet container itself (Tomcat by default) implements the
JSP specification, thus requiring no further dependencies.

 But there’s a gotcha if you choose to use JSP. As it turns out, Java servlet contain-
ers—including embedded Tomcat and Jetty containers—usually look for JSPs some-
where under /WEB-INF. But if you’re building your application as an executable JAR

59Choosing a view template library
file, there’s no way to satisfy that requirement. Therefore, JSP is an option only if
you’re building your application as a WAR file and deploying it in a traditional servlet
container. If you’re building an executable JAR file, you must choose Thymeleaf, Free-
Marker, or one of the other options in table 2.2.

2.5.1 Caching templates

By default, templates are parsed only once—when they’re first used—and the results
of that parse are cached for subsequent use. This is a great feature for production,
because it prevents redundant template parsing on each request and thus improves
performance.

 That feature is not so awesome at development time, however. Let’s say you fire
up your application, hit the taco design page, and decide to make a few changes to
it. When you refresh your web browser, you’ll still be shown the original version.
The only way you can see your changes is to restart the application, which is quite
inconvenient.

 Fortunately, we have a way to disable caching. All we need to do is set a template-
appropriate caching property to false. Table 2.3 lists the caching properties for each
of the supported template libraries.

By default, all of these properties are set to true to enable caching. You can disable
caching for your chosen template engine by setting its cache property to false. For
example, to disable Thymeleaf caching, add the following line in application.properties:

spring.thymeleaf.cache=false

The only catch is that you’ll want to be sure to remove this line (or set it to true)
before you deploy your application to production. One option is to set the property in
a profile. (We’ll talk about profiles in chapter 6.)

 A much simpler option is to use Spring Boot’s DevTools, as we opted to do in chap-
ter 1. Among the many helpful bits of development-time help offered by DevTools, it
will disable caching for all template libraries but will disable itself (and thus reenable
template caching) when your application is deployed.

Table 2.3 Properties to enable/disable template caching

Template Cache-enable property

FreeMarker spring.freemarker.cache

Groovy templates spring.groovy.template.cache

Mustache spring.mustache.cache

Thymeleaf spring.thymeleaf.cache

60 CHAPTER 2 Developing web applications
Summary
 Spring offers a powerful web framework called Spring MVC that can be used to

develop the web frontend for a Spring application.
 Spring MVC is annotation-based, enabling the declaration of request-handling

methods with annotations such as @RequestMapping, @GetMapping, and @Post-
Mapping.

 Most request-handling methods conclude by returning the logical name of a
view, such as a Thymeleaf template, to which the request (along with any model
data) is forwarded.

 Spring MVC supports validation through the JavaBean Validation API and
implementations of the Validation API such as Hibernate Validator.

 View controllers can be registered with addViewController in a WebMvc-
Configurer class to handle HTTP GET requests for which no model data or pro-
cessing is required.

 In addition to Thymeleaf, Spring supports a variety of view options, including
FreeMarker, Groovy templates, and Mustache.

Working with data
Most applications offer more than just a pretty face. Although the user interface
may provide interaction with an application, it’s the data it presents and stores that
separates applications from static websites.

 In the Taco Cloud application, you need to be able to maintain information
about ingredients, tacos, and orders. Without a database to store this information,
the application wouldn’t be able to progress much further than what you devel-
oped in chapter 2.

 In this chapter, you’re going to add data persistence to the Taco Cloud applica-
tion. You’ll start by using Spring support for JDBC (Java Database Connectivity) to
eliminate boilerplate code. Then you’ll rework the data repositories to work with
JPA (Java Persistence API), eliminating even more code.

This chapter covers
 Using Spring’s JdbcTemplate

 Creating Spring Data JDBC repositories

 Declaring JPA repositories with Spring Data
61

62 CHAPTER 3 Working with data
3.1 Reading and writing data with JDBC
For decades, relational databases and SQL have enjoyed their position as the leading
choice for data persistence. Even though many alternative database types have emerged
in recent years, the relational database is still a top choice for a general-purpose data
store and will not likely be usurped from its position any time soon.

 When it comes to working with relational data, Java developers have several
options. The two most common choices are JDBC and JPA. Spring supports both with
abstractions, making working with either JDBC or JPA easier than it would be without
Spring. In this section, we’ll focus on how Spring supports JDBC, and then we’ll look
at Spring support for JPA in section 3.2.

 Spring JDBC support is rooted in the JdbcTemplate class. JdbcTemplate provides a
means by which developers can perform SQL operations against a relational database
without all the ceremony and boilerplate typically required when working with JDBC.

 To gain an appreciation of what JdbcTemplate does, let’s start by looking at an
example of how to perform a simple query in Java without JdbcTemplate.

@Override
public Optional<Ingredient> findById(String id) {
 Connection connection = null;
 PreparedStatement statement = null;
 ResultSet resultSet = null;
 try {
 connection = dataSource.getConnection();
 statement = connection.prepareStatement(
 "select id, name, type from Ingredient where id=?");
 statement.setString(1, id);
 resultSet = statement.executeQuery();
 Ingredient ingredient = null;
 if(resultSet.next()) {
 ingredient = new Ingredient(
 resultSet.getString("id"),
 resultSet.getString("name"),
 Ingredient.Type.valueOf(resultSet.getString("type")));
 }
 return Optional.of(ingredient);
 } catch (SQLException e) {
 // ??? What should be done here ???
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {}
 }
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {}
 }

Listing 3.1 Querying a database without JdbcTemplate

63Reading and writing data with JDBC
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {}
 }
 }
 return Optional.empty();
}

I assure you that somewhere in listing 3.1 are a couple of lines that query the database
for ingredients. But I’ll bet you had a hard time spotting that query needle in the
JDBC haystack. It’s surrounded by code that creates a connection, creates a statement,
and cleans up by closing the connection, statement, and result set.

 To make matters worse, any number of things could go wrong when creating the
connection or the statement, or when performing the query. This requires that you
catch a SQLException, which may or may not be helpful in figuring out what went
wrong or how to address the problem.

 SQLException is a checked exception, which requires handling in a catch block.
But the most common problems, such as failure to create a connection to the data-
base or a mistyped query, can’t possibly be addressed in a catch block and are likely to
be rethrown for handling upstream. In contrast, consider the following method that
uses Spring’s JdbcTemplate.

private JdbcTemplate jdbcTemplate;

public Optional<Ingredient> findById(String id) {
 List<Ingredient> results = jdbcTemplate.query(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient,
 id);
 return results.size() == 0 ?
 Optional.empty() :
 Optional.of(results.get(0));
}
private Ingredient mapRowToIngredient(ResultSet row, int rowNum)
 throws SQLException {
 return new Ingredient(
 row.getString("id"),
 row.getString("name"),
 Ingredient.Type.valueOf(row.getString("type")));
}

The code in listing 3.2 is clearly much simpler than the raw JDBC example in list-
ing 3.1; there aren’t any statements or connections being created. And, after the
method is finished, there isn’t any cleanup of those objects. Finally, there isn’t any
handling of exceptions that can’t properly be handled in a catch block. What’s left is
code that’s focused solely on performing a query (the call to JdbcTemplate’s query()

Listing 3.2 Querying a database with JdbcTemplate

64 CHAPTER 3 Working with data
method) and mapping the results to an Ingredient object (handled by the mapRow-
ToIngredient() method).

 The code in listing 3.2 is a snippet of what you need to do to use JdbcTemplate to
persist and read data in the Taco Cloud application. Let’s take the next steps neces-
sary to outfit the application with JDBC persistence. We’ll start by making a few tweaks
to the domain objects.

3.1.1 Adapting the domain for persistence

When persisting objects to a database, it’s generally a good idea to have one field that
uniquely identifies the object. Your Ingredient class already has an id field, but you
need to add id fields to both Taco and TacoOrder as well.

 Moreover, it might be useful to know when a Taco is created and when a Taco-
Order is placed. You’ll also need to add a field to each object to capture the date and
time that the objects are saved. The following listing shows the new id and createdAt
fields needed in the Taco class.

@Data
public class Taco {

 private Long id;

 private Date createdAt = new Date();

 // ...

}

Because you use Lombok to automatically generate accessor methods at run time,
there’s no need to do anything more than declare the id and createdAt properties.
They’ll have appropriate getter and setter methods as needed at run time. Similar
changes are required in the TacoOrder class, as shown here:

@Data
public class TacoOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 private Long id;

 private Date placedAt;
 // ...

}

Again, Lombok automatically generates the accessor methods, so these are the only
changes required in TacoOrder. If for some reason you choose not to use Lombok,
you’ll need to write these methods yourself.

Listing 3.3 Adding ID and timestamp fields to the Taco class

65Reading and writing data with JDBC
 Your domain classes are now ready for persistence. Let’s see how to use Jdbc-
Template to read and write them to a database.

3.1.2 Working with JdbcTemplate

Before you can start using JdbcTemplate, you need to add it to your project classpath.
You can do this easily by adding Spring Boot’s JDBC starter dependency to the build
as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

You’re also going to need a database where your data will be stored. For development
purposes, an embedded database will be just fine. I favor the H2 embedded database,
so I’ve added the following dependency to the build:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

By default, the database name is randomly generated. But that makes it hard to deter-
mine the database URL if, for some reason, you need to connect to the database using
the H2 console (which Spring Boot DevTools enables at http:/ /localhost:8080/h2-
console). So, it’s a good idea to pin down the database name by setting a couple of
properties in application.properties, as shown next:

spring.datasource.generate-unique-name=false
spring.datasource.name=tacocloud

Or, if you prefer, rename application.properties to application.yml and add the prop-
erties in YAML format like so:

spring:
 datasource:
 generate-unique-name: false
 name: tacocloud

The choice between properties file format and YAML format is up to you. Spring Boot
is happy to work with either. Given the structure and increased readability of YAML,
we’ll use YAML for configuration properties throughout the rest of the book.

 By setting the spring.datasource.generate-unique-name property to false,
we’re telling Spring to not generate a unique random value for the database name.
Instead, it should use the value set to the spring.datasource.name property. In this
case, the database name will be "tacocloud". Consequently, the database URL will be

66 CHAPTER 3 Working with data
"jdbc:h2:mem:tacocloud", which you can specify in the JDBC URL for the H2 con-
sole connection.

 Later, you’ll see how to configure the application to use an external database. But
for now, let’s move on to writing a repository that fetches and saves Ingredient data.

DEFINING JDBC REPOSITORIES

Your Ingredient repository needs to perform the following operations:

 Query for all ingredients into a collection of Ingredient objects
 Query for a single Ingredient by its id
 Save an Ingredient object

The following IngredientRepository interface defines those three operations as
method declarations:

package tacos.data;

import java.util.Optional;

import tacos.Ingredient;

public interface IngredientRepository {

 Iterable<Ingredient> findAll();

 Optional<Ingredient> findById(String id);

 Ingredient save(Ingredient ingredient);

}

Although the interface captures the essence of what you need an ingredient reposi-
tory to do, you’ll still need to write an implementation of IngredientRepository that
uses JdbcTemplate to query the database. The code shown next is the first step in writ-
ing that implementation.

package tacos.data;
import java.sql.ResultSet;
import java.sql.SQLException;

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;

import tacos.Ingredient;

@Repository
public class JdbcIngredientRepository implements IngredientRepository {

 private JdbcTemplate jdbcTemplate;

Listing 3.4 Beginning an ingredient repository with JdbcTemplate

67Reading and writing data with JDBC
 public JdbcIngredientRepository(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 // ...

}

As you can see, JdbcIngredientRepository is annotated with @Repository. This
annotation is one of a handful of stereotype annotations that Spring defines, includ-
ing @Controller and @Component. By annotating JdbcIngredientRepository with
@Repository, you declare that it should be automatically discovered by Spring compo-
nent scanning and instantiated as a bean in the Spring application context.

 When Spring creates the JdbcIngredientRepository bean, it injects it with Jdbc-
Template. That’s because when there’s only one constructor, Spring implicitly applies
autowiring of dependencies through that constructor’s parameters. If there is more
than one constructor, or if you just want autowiring to be explicitly stated, then you
can annotate the constructor with @Autowired as follows:

@Autowired
public JdbcIngredientRepository(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
}

The constructor assigns JdbcTemplate to an instance variable that will be used in
other methods to query and insert into the database. Speaking of those other meth-
ods, let’s take a look at the implementations of findAll() and findById(), shown in
the code sample.

@Override
public Iterable<Ingredient> findAll() {
 return jdbcTemplate.query(
 "select id, name, type from Ingredient",
 this::mapRowToIngredient);
}

@Override
public Optional<Ingredient> findById(String id) {
 List<Ingredient> results = jdbcTemplate.query(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient,
 id);
 return results.size() == 0 ?
 Optional.empty() :
 Optional.of(results.get(0));
}

private Ingredient mapRowToIngredient(ResultSet row, int rowNum)
 throws SQLException {

Listing 3.5 Querying the database with JdbcTemplate

68 CHAPTER 3 Working with data
 return new Ingredient(
 row.getString("id"),
 row.getString("name"),
 Ingredient.Type.valueOf(row.getString("type")));
}

Both findAll() and findById() use JdbcTemplate in a similar way. The findAll()
method, expecting to return a collection of objects, uses JdbcTemplate’s query()
method. The query() method accepts the SQL for the query as well as an implemen-
tation of Spring’s RowMapper for the purpose of mapping each row in the result set to
an object. query() also accepts as its final argument(s) a list of any parameters
required in the query. But, in this case, there aren’t any required parameters.

 In contrast, the findById() method will need to include a where clause in its
query to compare the value of the id column with the value of the id parameter
passed into the method. Therefore, the call to query() includes, as its final parameter,
the id parameter. When the query is performed, the ? will be replaced with this value.

 As shown in listing 3.5, the RowMapper parameter for both findAll() and find-
ById() is given as a method reference to the mapRowToIngredient() method. Java’s
method references and lambdas are convenient when working with JdbcTemplate as
an alternative to an explicit RowMapper implementation. If for some reason you want
or need an explicit RowMapper, then the following implementation of findById()
shows how to do that:

@Override
public Ingredient findById(String id) {
 return jdbcTemplate.queryForObject(
 "select id, name, type from Ingredient where id=?",
 new RowMapper<Ingredient>() {
 public Ingredient mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
 };
 }, id);
}

Reading data from a database is only part of the story. At some point, data must be
written to the database so that it can be read. Let’s see about implementing the
save() method.

INSERTING A ROW

JdbcTemplate’s update() method can be used for any query that writes or updates
data in the database. And, as shown in the following listing, it can be used to insert
data into the database.

69Reading and writing data with JDBC
@Override
public Ingredient save(Ingredient ingredient) {
 jdbcTemplate.update(
 "insert into Ingredient (id, name, type) values (?, ?, ?)",
 ingredient.getId(),
 ingredient.getName(),
 ingredient.getType().toString());
 return ingredient;
}

Because it isn’t necessary to map ResultSet data to an object, the update() method is
much simpler than query(). It requires only a String containing the SQL to perform
as well as values to assign to any query parameters. In this case, the query has three
parameters, which correspond to the final three parameters of the save() method,
providing the ingredient’s ID, name, and type.

 With JdbcIngredientRepository complete, you can now inject it into Design-
TacoController and use it to provide a list of Ingredient objects instead of using
hardcoded values (as you did in chapter 2). The changes to DesignTacoController
are shown next.

@Controller
@RequestMapping("/design")
@SessionAttributes("tacoOrder")
public class DesignTacoController {

 private final IngredientRepository ingredientRepo;

 @Autowired
 public DesignTacoController(
 IngredientRepository ingredientRepo) {
 this.ingredientRepo = ingredientRepo;
 }

 @ModelAttribute
 public void addIngredientsToModel(Model model) {
 Iterable<Ingredient> ingredients = ingredientRepo.findAll();
 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }
 }

 // ...
}

Listing 3.6 Inserting data with JdbcTemplate

Listing 3.7 Injecting and using a repository in the controller

70 CHAPTER 3 Working with data
The addIngredientsToModel() method uses the injected IngredientRepository’s
findAll() method to fetch all ingredients from the database. It then filters them into
distinct ingredient types before adding them to the model.

 Now that we have an IngredientRepository from which to fetch Ingredient
objects, we can also simplify the IngredientByIdConverter that we created in chap-
ter 2, replacing its hardcoded Map of Ingredient objects with a simple call to the
IngredientRepository.findById() method, as shown next.

package tacos.web;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.convert.converter.Converter;
import org.springframework.stereotype.Component;

import tacos.Ingredient;
import tacos.data.IngredientRepository;

@Component
public class IngredientByIdConverter implements Converter<String, Ingredient> {

 private IngredientRepository ingredientRepo;

 @Autowired
 public IngredientByIdConverter(IngredientRepository ingredientRepo) {
 this.ingredientRepo = ingredientRepo;
 }

 @Override
 public Ingredient convert(String id) {
 return ingredientRepo.findById(id).orElse(null);
 }

}

You’re almost ready to fire up the application and try out these changes. But before
you can start reading data from the Ingredient table referenced in the queries, you
should probably create that table and populate it with some ingredient data.

3.1.3 Defining a schema and preloading data

Aside from the Ingredient table, you’re also going to need some tables that hold
order and design information. Figure 3.1 illustrates the tables you’ll need, as well as
the relationships between those tables.

 The tables in figure 3.1 serve the following purposes:

 Taco_Order—Holds essential order details
 Taco—Holds essential information about a taco design
 Ingredient_Ref—Contains one or more rows for each row in Taco, mapping

the taco to the ingredients for that taco
 Ingredient—Holds ingredient information

Listing 3.8 Simplifying IngredientByIdConverter

71Reading and writing data with JDBC
In our application, a Taco can’t exist outside of the context of a Taco_Order. Thus,
Taco_Order and Taco are considered members of an aggregate where Taco_Order is
the aggregate root. Ingredient objects, on the other hand, are sole members of their
own aggregate and are referenced by Taco by way of Ingredient_Ref.

NOTE Aggregates and aggregate roots are core concepts of domain-driven
design, a design approach that promotes the idea that the structure and lan-
guage of software code should match the business domain. Although we’re
applying a little domain-driven design (DDD) in the Taco Cloud domain
objects, there’s much more to DDD than aggregates and aggregate roots. For
more on this subject, read the seminal work on the subject, Domain-Driven
Design: Tackling Complexity in the Heart of Software (https://www.dddcommunity
.org/book/evans_2003/), by Eric Evans.

The next listing shows the SQL that creates the tables.

create table if not exists Taco_Order (
 id identity,
 delivery_Name varchar(50) not null,
 delivery_Street varchar(50) not null,
 delivery_City varchar(50) not null,
 delivery_State varchar(2) not null,
 delivery_Zip varchar(10) not null,
 cc_number varchar(16) not null,
 cc_expiration varchar(5) not null,
 cc_cvv varchar(3) not null,
 placed_at timestamp not null
);

create table if not exists Taco (
 id identity,

Listing 3.9 Defining the Taco Cloud schema

Taco_Order

id: identity

delivery_name: varchar

delivery_street: varchar

delivery_city: varchar

delivery_state: varchar

delivery_zip: varchar

cc_number: varchar

cc_expiration: varchar

cc_cvv: varchar

placed_at: timestamp

* taco: bigint

taco_key: bigint

ingredient: varchar

Ingredient_Ref

Ingredient

id: varchar

name: varchar

type: varchar

Taco

id: identity

name: varchar

taco_order: bigint

taco_order_key: bigint

createdAt: timestamp

*

*

Figure 3.1 The tables for the Taco Cloud schema

https://www.dddcommunity.org/book/evans_2003/
https://www.dddcommunity.org/book/evans_2003/
https://www.dddcommunity.org/book/evans_2003/

72 CHAPTER 3 Working with data
 name varchar(50) not null,
 taco_order bigint not null,
 taco_order_key bigint not null,
 created_at timestamp not null
);

create table if not exists Ingredient_Ref (
 ingredient varchar(4) not null,
 taco bigint not null,
 taco_key bigint not null
);

create table if not exists Ingredient (
 id varchar(4) not null,
 name varchar(25) not null,
 type varchar(10) not null
);

alter table Taco
 add foreign key (taco_order) references Taco_Order(id);
alter table Ingredient_Ref
 add foreign key (ingredient) references Ingredient(id);

The big question is where to put this schema definition. As it turns out, Spring Boot
answers that question.

 If there’s a file named schema.sql in the root of the application’s classpath, then
the SQL in that file will be executed against the database when the application starts.
Therefore, you should place the contents of listing 3.8 in your project as a file named
schema.sql in the src/main/resources folder.

 You also need to preload the database with some ingredient data. Fortunately,
Spring Boot will also execute a file named data.sql from the root of the classpath when
the application starts. Therefore, you can load the database with ingredient data using
the insert statements in the next listing, placed in src/main/resources/data.sql.

delete from Ingredient_Ref;
delete from Taco;
delete from Taco_Order;

delete from Ingredient;
insert into Ingredient (id, name, type)
 values ('FLTO', 'Flour Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('COTO', 'Corn Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('GRBF', 'Ground Beef', 'PROTEIN');
insert into Ingredient (id, name, type)
 values ('CARN', 'Carnitas', 'PROTEIN');

Listing 3.10 Preloading the database with data.sql

73Reading and writing data with JDBC
insert into Ingredient (id, name, type)
 values ('TMTO', 'Diced Tomatoes', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('LETC', 'Lettuce', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('CHED', 'Cheddar', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('JACK', 'Monterrey Jack', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('SLSA', 'Salsa', 'SAUCE');
insert into Ingredient (id, name, type)
 values ('SRCR', 'Sour Cream', 'SAUCE');

Even though you’ve only developed a repository for ingredient data, you can fire up the
Taco Cloud application at this point and visit the design page to see JdbcIngredient-
Repository in action. Go ahead … give it a try. When you get back, you’ll write the
repositories for persisting Taco and TacoOrder data.

3.1.4 Inserting data

You’ve already had a glimpse into how to use JdbcTemplate to write data to the data-
base. The save() method in JdbcIngredientRepository used the update() method
of JdbcTemplate to save Ingredient objects to the database.

 Although that was a good first example, it was perhaps a bit too simple. As you’ll
soon see, saving data can be more involved than what JdbcIngredientRepository
needed.

 In our design, TacoOrder and Taco are part of an aggregate in which TacoOrder is
the aggregate root. In other words, Taco objects don’t exist outside of the context of a
TacoOrder. So, for now, we only need to define a repository to persist TacoOrder
objects and, in turn, Taco objects along with them. Such a repository can be defined
in a OrderRepository interface like this:

package tacos.data;

import java.util.Optional;

import tacos.TacoOrder;

public interface OrderRepository {

 TacoOrder save(TacoOrder order);

}

Seems simple enough, right? Not so quick. When you save a TacoOrder, you also must
save the Taco objects that go with it. And when you save the Taco objects, you’ll also
need to save an object that represents the link between the Taco and each Ingredient
that makes up the taco. The IngredientRef class defines that linking between Taco
and Ingredient as follows:

74 CHAPTER 3 Working with data
package tacos;

import lombok.Data;

@Data
public class IngredientRef {

 private final String ingredient;

}

Suffice it to say that the save() method will be a bit more interesting than the corre-
sponding method you created earlier for saving a humble Ingredient object.

 Another thing that the save() method will need to do is determine what ID is
assigned to the order once it has been saved. Per the schema, the id property on the
Taco_Order table is an identity, meaning that the database will determine the value
automatically. But if the database determines the value for you, then you will need to
know what that value is so that it can be returned in the TacoOrder object returned
from the save() method. Fortunately, Spring offers a helpful GeneratedKeyHolder
type that can help with that. But it involves working with a prepared statement, as
shown in the following implementation of the save() method:

package tacos.data;

import java.sql.Types;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
import java.util.Optional;

import org.springframework.asm.Type;
import org.springframework.jdbc.core.JdbcOperations;
import org.springframework.jdbc.core.PreparedStatementCreator;
import org.springframework.jdbc.core.PreparedStatementCreatorFactory;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import tacos.IngredientRef;
import tacos.Taco;
import tacos.TacoOrder;

@Repository
public class JdbcOrderRepository implements OrderRepository {

 private JdbcOperations jdbcOperations;

 public JdbcOrderRepository(JdbcOperations jdbcOperations) {
 this.jdbcOperations = jdbcOperations;
 }

75Reading and writing data with JDBC
 @Override
 @Transactional
 public TacoOrder save(TacoOrder order) {
 PreparedStatementCreatorFactory pscf =
 new PreparedStatementCreatorFactory(
 "insert into Taco_Order "
 + "(delivery_name, delivery_street, delivery_city, "
 + "delivery_state, delivery_zip, cc_number, "
 + "cc_expiration, cc_cvv, placed_at) "
 + "values (?,?,?,?,?,?,?,?,?)",
 Types.VARCHAR, Types.VARCHAR, Types.VARCHAR,
 Types.VARCHAR, Types.VARCHAR, Types.VARCHAR,
 Types.VARCHAR, Types.VARCHAR, Types.TIMESTAMP
);
 pscf.setReturnGeneratedKeys(true);

 order.setPlacedAt(new Date());
 PreparedStatementCreator psc =
 pscf.newPreparedStatementCreator(
 Arrays.asList(
 order.getDeliveryName(),
 order.getDeliveryStreet(),
 order.getDeliveryCity(),
 order.getDeliveryState(),
 order.getDeliveryZip(),
 order.getCcNumber(),
 order.getCcExpiration(),
 order.getCcCVV(),
 order.getPlacedAt()));

 GeneratedKeyHolder keyHolder = new GeneratedKeyHolder();
 jdbcOperations.update(psc, keyHolder);
 long orderId = keyHolder.getKey().longValue();
 order.setId(orderId);

 List<Taco> tacos = order.getTacos();
 int i=0;
 for (Taco taco : tacos) {
 saveTaco(orderId, i++, taco);
 }

 return order;
 }
}

There appears to be a lot going on in the save() method, but we can break it down
into only a handful of significant steps. First, you create a PreparedStatement-
CreatorFactory that describes the insert query along with the types of the query’s
input fields. Because you’ll later need to fetch the saved order’s ID, you also will need
to call setReturnGeneratedKeys(true).

 After defining the PreparedStatementCreatorFactory, you use it to create a
PreparedStatementCreator, passing in the values from the TacoOrder object that will

76 CHAPTER 3 Working with data
be persisted. The last field given to the PreparedStatementCreator is the date that
the order is created, which you’ll also need to set on the TacoOrder object itself so
that the returned TacoOrder will have that information available.

 Now that you have a PreparedStatementCreator in hand, you’re ready to actually
save the order data by calling the update() method on JdbcTemplate, passing in the
PreparedStatementCreator and a GeneratedKeyHolder. After the order data has
been saved, the GeneratedKeyHolder will contain the value of the id field as assigned
by the database and should be copied into the TacoOrder object’s id property.

 At this point, the order has been saved, but you need to also save the Taco objects
associated with the order. You can do that by calling saveTaco() for each Taco in
the order.

 The saveTaco() method is quite similar to the save() method, as you can see
here:

private long saveTaco(Long orderId, int orderKey, Taco taco) {
 taco.setCreatedAt(new Date());
 PreparedStatementCreatorFactory pscf =
 new PreparedStatementCreatorFactory(
 "insert into Taco "
 + "(name, created_at, taco_order, taco_order_key) "
 + "values (?, ?, ?, ?)",
 Types.VARCHAR, Types.TIMESTAMP, Type.LONG, Type.LONG
);
 pscf.setReturnGeneratedKeys(true);

 PreparedStatementCreator psc =
 pscf.newPreparedStatementCreator(
 Arrays.asList(
 taco.getName(),
 taco.getCreatedAt(),
 orderId,
 orderKey));

 GeneratedKeyHolder keyHolder = new GeneratedKeyHolder();
 jdbcOperations.update(psc, keyHolder);
 long tacoId = keyHolder.getKey().longValue();
 taco.setId(tacoId);

 saveIngredientRefs(tacoId, taco.getIngredients());

 return tacoId;
}

Step by step, saveTaco() mirrors the structure of save(), albeit for Taco data instead
of TacoOrder data. In the end, it makes a call to saveIngredientRefs() to create a
row in the Ingredient_Ref table to link the Taco row to an Ingredient row. The
saveIngredientRefs() method looks like this:

private void saveIngredientRefs(
 long tacoId, List<IngredientRef> ingredientRefs) {

77Reading and writing data with JDBC
 int key = 0;
 for (IngredientRef ingredientRef : ingredientRefs) {
 jdbcOperations.update(
 "insert into Ingredient_Ref (ingredient, taco, taco_key) "
 + "values (?, ?, ?)",
 ingredientRef.getIngredient(), tacoId, key++);
 }
}

Thankfully, the saveIngredientRefs() method is much simpler. It cycles through a
list of Ingredient objects, saving each into the Ingredient_Ref table. It also has a local
key variable that is used as an index to ensure that the ordering of the ingredients
stays intact.

 All that’s left to do with OrderRepository is to inject it into OrderController and
use it when saving an order. The following listing shows the changes necessary for
injecting the repository.

package tacos.web;
import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

import tacos.TacoOrder;
import tacos.data.OrderRepository;

@Controller
@RequestMapping("/orders")
@SessionAttributes("tacoOrder")
public class OrderController {

 private OrderRepository orderRepo;

 public OrderController(OrderRepository orderRepo) {
 this.orderRepo = orderRepo;
 }

 // ...

 @PostMapping
 public String processOrder(@Valid TacoOrder order, Errors errors,

SessionStatus sessionStatus) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

Listing 3.11 Injecting and using OrderRepository

78 CHAPTER 3 Working with data
 orderRepo.save(order);
 sessionStatus.setComplete();

 return "redirect:/";
 }

}

As you can see, the constructor takes an OrderRepository as a parameter and assigns
it to an instance variable that it will use in the processOrder() method. Speaking of
the processOrder() method, it has been changed to call the save() method on the
OrderRepository instead of logging the TacoOrder object.

 Spring’s JdbcTemplate makes working with relational databases significantly sim-
pler than with plain vanilla JDBC. But even with JdbcTemplate, some persistence tasks
are still challenging, especially when persisting nested domain objects in an aggre-
gate. If only there were a way to work with JDBC that was even simpler.

 Let’s have a look at Spring Data JDBC, which makes working with JDBC insanely
easy—even when persisting aggregates.

3.2 Working with Spring Data JDBC
The Spring Data project is a rather large umbrella project comprising several subproj-
ects, most of which are focused on data persistence with a variety of different database
types. A few of the most popular Spring Data projects include these:

 Spring Data JDBC—JDBC persistence against a relational database
 Spring Data JPA—JPA persistence against a relational database
 Spring Data MongoDB—Persistence to a Mongo document database
 Spring Data Neo4j—Persistence to a Neo4j graph database
 Spring Data Redis—Persistence to a Redis key-value store
 Spring Data Cassandra—Persistence to a Cassandra column store database

One of the most interesting and useful features provided by Spring Data for all of
these projects is the ability to automatically create repositories, based on a repository
specification interface. Consequently, persistence with Spring Data projects has little
or no persistence logic and involves writing only one or more repository interfaces.

 Let’s see how to apply Spring Data JDBC to our project to simplify data persistence
with JDBC. First, you’ll need to add Spring Data JDBC to the project build.

3.2.1 Adding Spring Data JDBC to the build

Spring Data JDBC is available as a starter dependency for Spring Boot apps. When
added to the project’s pom.xml file, the starter dependency looks like the following
code snippet.

79Working with Spring Data JDBC
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jdbc</artifactId>
</dependency>

You will no longer need the JDBC starter that gave us JdbcTemplate, so you can
remove the starter that looks like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

You’ll still need a database, however, so don’t remove the H2 dependency.

3.2.2 Defining repository interfaces

Fortunately, we’ve already created IngredientRepository and OrderRepository, so
much of the work in defining our repositories is already done. But we’ll need to make
a subtle change to them in order to use them with Spring Data JDBC.

 Spring Data will automatically generate implementations for our repository inter-
faces at run time. But it will do that only for interfaces that extend one of the reposi-
tory interfaces provided by Spring Data. At the very least, our repository interfaces will
need to extend Repository so that Spring Data knows to create the implementation
automatically. For example, here’s how you might write IngredientRepository such
that it extends Repository:

package tacos.data;
import java.util.Optional;
import org.springframework.data.repository.Repository;
import tacos.Ingredient;

public interface IngredientRepository
 extends Repository<Ingredient, String> {

 Iterable<Ingredient> findAll();

 Optional<Ingredient> findById(String id);

 Ingredient save(Ingredient ingredient);

}

As you can see, the Repository interface is parameterized. The first parameter is the
type of the object to be persisted by this repository—in this case, Ingredient. The sec-
ond parameter is the type of the persisted object’s ID field. For Ingredient, that’s
String.

Listing 3.12 Adding the Spring Data JDBC dependency to the build

80 CHAPTER 3 Working with data
 Although IngredientRepository will work as shown here by extending Repository,
Spring Data also offers CrudRepository as a base interface for common operations,
including the three methods we’ve defined in IngredientRepository. So, instead of
extending Repository, it’s often easier to extend CrudRepository, as shown next.

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

Similarly, our OrderRepository can extend CrudRepository as shown in the next
listing.

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.TacoOrder;

public interface OrderRepository
 extends CrudRepository<TacoOrder, Long> {

}

In both cases, because CrudRepository already defines the methods you need, there’s
no need to explicitly define them in the IngredientRepository and OrderRepository
interfaces.

 And now you have your two repositories. You might be thinking that you need to
write the implementations for both repositories, including the dozen methods
defined in CrudRepository. But that’s the good news about Spring Data—there’s no
need to write an implementation! When the application starts, Spring Data automati-
cally generates an implementation on the fly. This means the repositories are ready to
use from the get-go. Just inject them into the controllers and you’re done.

 What’s more, because Spring Data automatically creates implementations of these
interfaces at run time, you no longer need the explicit implementations in Jdbc-
IngredientRepository and JdbcOrderRepository. You can delete those two classes
and never look back!

Listing 3.13 Defining a repository interface for persisting ingredients

Listing 3.14 Defining a repository interface for persisting taco orders

81Working with Spring Data JDBC
3.2.3 Annotating the domain for persistence

The only other thing we’ll need to do is annotate our domain classes so that Spring
Data JDBC will know how to persist them. Generally speaking, this means annotating
the identity properties with @Id—so that Spring Data will know which field represents
the object’s identity—and optionally annotating the class with @Table.

 For example, the TacoOrder class might be annotated with @Table and @Id as
shown in the following code.

package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.validation.constraints.Digits;
import javax.validation.constraints.NotBlank;
import javax.validation.constraints.Pattern;

import org.hibernate.validator.constraints.CreditCardNumber;
import org.springframework.data.annotation.Id;
import org.springframework.data.relational.core.mapping.Table;

import lombok.Data;

@Data
@Table
public class TacoOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 private Long id;

 // ...

}

The @Table annotation is completely optional. By default, the object is mapped to a
table based on the domain class name. In this case, TacoOrder is mapped to a table
named "Taco_Order". If that’s fine for you, then you can leave the @Table annotation
off completely or use it without parameters. But if you’d prefer to map it to a different
table name, then you can specify the table name as a parameter to @Table like this:

@Table("Taco_Cloud_Order")
public class TacoOrder {
 ...
}

As shown here, TacoOrder will be mapped to a table named "Taco_Cloud_Order".

Listing 3.15 Preparing the Taco class for persistence

82 CHAPTER 3 Working with data
 As for the @Id annotation, it designates the id property as being the identity for a
TacoOrder. All other properties in TacoOrder will be mapped automatically to col-
umns based on their property names. For example, the deliveryName property will be
automatically mapped to the column named delivery_name. But if you want to
explicitly define the column name mapping, you could annotate the property with
@Column like this:

@Column("customer_name")
@NotBlank(message="Delivery name is required")
private String deliveryName;

In this case, @Column is specifying that the deliveryName property will be mapped to
the column whose name is customer_name.

 You’ll also need to apply @Table and @Id to the other domain classes. This includes
@Ingredient.

package tacos;

import org.springframework.data.annotation.Id;
import org.springframework.data.domain.Persistable;
import org.springframework.data.relational.core.mapping.Table;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@Table
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
public class Ingredient implements Persistable<String> {

 @Id
 private String id;

 // ...

}

…and Taco.

package tacos;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

Listing 3.16 Preparing the Ingredient class for persistence

Listing 3.17 Preparing the Taco class for persistence

83Working with Spring Data JDBC
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import org.springframework.data.annotation.Id;
import org.springframework.data.relational.core.mapping.Table;

import lombok.Data;

@Data
@Table
public class Taco {

 @Id
 private Long id;

 // ...

}

As for IngredientRef, it will be mapped automatically to the table whose name is
"Ingredient_Ref", which is perfect for our application. You can annotate it with
@Table if you want, but it’s not necessary. And the "Ingredient_Ref" table has no
identity column, so there is no need to annotate anything in IngredientRef with @Id.

 With these small changes, not to mention the complete removal of the Jdbc-
IngredientRepository and JdbcOrderRepository classes, you now have a lot less
persistence code. Even so, the repository implementations that are generated at run-
time by Spring Data still do everything that the repositories using JdbcTemplate did.
In fact, they have potential for doing even more, because the two repository interfaces
extend CrudRepository, which offers a dozen or so operations for creating, reading,
updating, and deleting objects.

3.2.4 Preloading data with CommandLineRunner

When working with JdbcTemplate, we preloaded the Ingredient data at application
startup using data.sql, which was executed against the database when the data source
bean was created. That same approach will work with Spring Data JDBC. In fact, it will
work with any persistence mechanism for which the backing database is a relational
database. But let’s see another way of populating a database at startup that offers a bit
more flexibility.

 Spring Boot offers two useful interfaces for executing logic when an application
starts up: CommandLineRunner and ApplicationRunner. These two interfaces are quite
similar. Both are functional interfaces that require that a single run() method be imple-
mented. When the application starts up, any beans in the application context that
implement CommandLineRunner or ApplicationRunner will have their run() methods
invoked after the application context and all beans are wired up, but before anything
else happens. This provides a convenient place for data to be loaded into the database.

 Because both CommandLineRunner and ApplicationRunner are functional interfaces,
they can easily be declared as beans in a configuration class using a @Bean-annotated

84 CHAPTER 3 Working with data
method that returns a lambda function. For example, here’s how you might create a
data-loading CommandLineRunner bean:

@Bean
public CommandLineRunner dataLoader(IngredientRepository repo) {
 return args -> {
 repo.save(new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 repo.save(new Ingredient("COTO", "Corn Tortilla", Type.WRAP));
 repo.save(new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 repo.save(new Ingredient("CARN", "Carnitas", Type.PROTEIN));
 repo.save(new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES));
 repo.save(new Ingredient("LETC", "Lettuce", Type.VEGGIES));
 repo.save(new Ingredient("CHED", "Cheddar", Type.CHEESE));
 repo.save(new Ingredient("JACK", "Monterrey Jack", Type.CHEESE));
 repo.save(new Ingredient("SLSA", "Salsa", Type.SAUCE));
 repo.save(new Ingredient("SRCR", "Sour Cream", Type.SAUCE));
 };
}

Here, the IngredientRepository is injected into the bean method and used within
the lambda to create Ingredient objects. The run() method of CommandLineRunner
accepts a single parameter that is a String vararg containing all of the command-line
arguments for the running application. We don’t need those to load ingredients into
the database, so the args parameter is ignored.

 Alternatively, we could have defined the data-loader bean as a lambda implementa-
tion of ApplicationRunner like this:

@Bean
public ApplicationRunner dataLoader(IngredientRepository repo) {
 return args -> {
 repo.save(new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 repo.save(new Ingredient("COTO", "Corn Tortilla", Type.WRAP));
 repo.save(new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 repo.save(new Ingredient("CARN", "Carnitas", Type.PROTEIN));
 repo.save(new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES));
 repo.save(new Ingredient("LETC", "Lettuce", Type.VEGGIES));
 repo.save(new Ingredient("CHED", "Cheddar", Type.CHEESE));
 repo.save(new Ingredient("JACK", "Monterrey Jack", Type.CHEESE));
 repo.save(new Ingredient("SLSA", "Salsa", Type.SAUCE));
 repo.save(new Ingredient("SRCR", "Sour Cream", Type.SAUCE));
 };
}

The key difference between CommandLineRunner and ApplicationRunner is in the
parameter passed to the respective run() methods. CommandLineRunner accepts a
String vararg, which is a raw representation of arguments passed on the command
line. But ApplicationRunner accepts an ApplicationArguments parameter that offers
methods for accessing the arguments as parsed components of the command line.

 For example, suppose that we want our application to accept a command line with
arguments such as "--version 1.2.3" and need to consider that argument in our

85Persisting data with Spring Data JPA
loader bean. If using a CommandLineRunner, we’d need to search the array for “--ver-
sion” and then take the very next value from the array. But with ApplicationRunner,
we can query the given ApplicationArguments for the “--version” argument like this:

public ApplicationRunner dataLoader(IngredientRepository repo) {
 return args -> {
 List<String> version = args.getOptionValues("version");
 ...
 };
}

The getOptionValues() method returns a List<String> to allow for the option argu-
ment to be specified multiple times.

 In the case of either CommandLineRunner or ApplicationRunner, however, we
don’t need command-line arguments to load data. So the args parameter is ignored
in our data-loader bean.

 What’s nice about using CommandLineRunner or ApplicationRunner to do an ini-
tial data load is that they are using the repositories to create the persisted objects
instead of a SQL script. This means that they’ll work equally well for relational data-
bases and nonrelational databases. This will come in handy in the next chapter when
we see how to use Spring Data to persist to nonrelational databases.

 But before we do that, let’s have a look at another Spring Data project for persist-
ing data in relational databases: Spring Data JPA.

3.3 Persisting data with Spring Data JPA
Whereas Spring Data JDBC makes easy work of persisting data, the Java Persistence
API (JPA) is another popular option for working with data in a relational database.
Spring Data JPA offers an approach to persistence with JPA similar to what Spring
Data JDBC gave us for JDBC.

 To see how Spring Data works, you’re going to start over, replacing the JDBC-based
repositories from earlier in this chapter with repositories created by Spring Data JPA.
But first, you need to add Spring Data JPA to the project build.

3.3.1 Adding Spring Data JPA to the project

Spring Data JPA is available to Spring Boot applications with the JPA starter. This
starter dependency not only brings in Spring Data JPA but also transitively includes
Hibernate as the JPA implementation, as shown here:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

If you want to use a different JPA implementation, then you’ll need to, at least,
exclude the Hibernate dependency and include the JPA library of your choice. For

86 CHAPTER 3 Working with data
example, to use EclipseLink instead of Hibernate, you’ll need to alter the build as
follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>org.eclipse.persistence.jpa</artifactId>
 <version>2.7.6</version>
</dependency>

Note that there may be other changes required, depending on your choice of JPA
implementation. Consult the documentation of your chosen JPA implementation for
details. Now let’s revisit your domain objects and annotate them for JPA persistence.

3.3.2 Annotating the domain as entities

As you’ve already seen with Spring Data JDBC, Spring Data does some amazing things
when it comes to creating repositories. But unfortunately, it doesn’t help much when
it comes to annotating your domain objects with JPA mapping annotations. You’ll
need to open up the Ingredient, Taco, and TacoOrder classes and throw in a few
annotations. First up is the Ingredient class, shown next.

package tacos;

import javax.persistence.Entity;
import javax.persistence.Id;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@Entity
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
public class Ingredient {

 @Id
 private String id;
 private String name;
 private Type type;

Listing 3.18 Annotating Ingredient for JPA persistence

87Persisting data with Spring Data JPA
 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

To declare this as a JPA entity, Ingredient must be annotated with @Entity. And its id
property must be annotated with @Id to designate it as the property that will uniquely
identify the entity in the database. Note that this @Id annotation is the JPA variety
from the javax.persistence package, as opposed to the @Id provided by Spring Data
in the org.springframework.data.annotation package.

 Also note that we no longer need the @Table annotation or need to implement
Persistable. Although we could still use @Table here, it is unnecessary when work-
ing with JPA and defaults to the name of the class ("Ingredient", in this case). As
for Persistable, it was only necessary with Spring Data JDBC to determine whether
or not an entity was to be created new, or to update an existing entity; JPA sorts that
out automatically.

 In addition to the JPA-specific annotations, you’ll also note that you’ve added a
@NoArgsConstructor annotation at the class level. JPA requires that entities have
a no-arguments constructor, so Lombok’s @NoArgsConstructor does that for you.
You don’t want to be able to use it, though, so you make it private by setting the
access attribute to AccessLevel.PRIVATE. And because you must set final proper-
ties, you also set the force attribute to true, which results in the Lombok-generated
constructor setting them to a default value of null, 0, or false, depending on the
property type.

 You also will add an @AllArgsConstructor to make it easy to create an Ingredient
object with all properties initialized.

 You also need a @RequiredArgsConstructor. The @Data annotation implicitly
adds a required arguments constructor, but when a @NoArgsConstructor is used,
that constructor is removed. An explicit @RequiredArgsConstructor ensures that
you’ll still have a required arguments constructor, in addition to the private no-
arguments constructor.

 Now let’s move on to the Taco class and see how to annotate it as a JPA entity.

package tacos;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;

Listing 3.19 Annotating Taco as an entity

88 CHAPTER 3 Working with data
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import lombok.Data;

@Data
@Entity
public class Taco {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 @ManyToMany()
 private List<Ingredient> ingredients = new ArrayList<>();

 public void addIngredient(Ingredient ingredient) {
 this.ingredients.add(ingredient);
 }

}

As with Ingredient, the Taco class is now annotated with @Entity and has its id prop-
erty annotated with @Id. Because you’re relying on the database to automatically gen-
erate the ID value, you also annotate the id property with @GeneratedValue,
specifying a strategy of AUTO.

 To declare the relationship between a Taco and its associated Ingredient list, you
annotate ingredients with @ManyToMany. A Taco can have many Ingredient objects,
and an Ingredient can be a part of many Tacos.

 Finally, let’s annotate the TacoOrder object as an entity. The next listing shows the
new TacoOrder class.

package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

Listing 3.20 Annotating TacoOrder as a JPA entity

89Persisting data with Spring Data JPA
import javax.persistence.OneToMany;
import javax.validation.constraints.Digits;
import javax.validation.constraints.NotBlank;
import javax.validation.constraints.Pattern;

import org.hibernate.validator.constraints.CreditCardNumber;

import lombok.Data;

@Data
@Entity
public class TacoOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 private Date placedAt = new Date();

 ...

 @OneToMany(cascade = CascadeType.ALL)
 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }

}

As you can see, the changes to TacoOrder closely mirror the changes to Taco. One sig-
nificant thing worth noting is that the relationship to the list of Taco objects is anno-
tated with @OneToMany, indicating that the tacos are all specific to this one order.
Moreover, the cascade attribute is set to CascadeType.ALL so that if the order is
deleted, its related tacos will also be deleted.

3.3.3 Declaring JPA repositories

When you created the JdbcTemplate versions of the repositories, you explicitly
declared the methods you wanted the repository to provide. But with Spring Data
JDBC, you were able to dismiss the explicit implementation classes and instead extend
the CrudRepository interface. As it turns out, CrudRepository works equally well for
Spring Data JPA. For example, here’s the new IngredientRepository interface:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

90 CHAPTER 3 Working with data
public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

In fact, the IngredientRepository interface we’ll use with Spring Data JPA is identi-
cal to the one we defined for use with Spring Data JDBC. The CrudRepository interface
is commonly used across many of Spring Data’s projects, regardless of the underlying
persistence mechanism. Similarly, you can define OrderRepository for the Spring
Data JPA the same as it was for Spring Data JDBC, as follows:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.TacoOrder;

public interface OrderRepository
 extends CrudRepository<TacoOrder, Long> {

}

The methods provided by CrudRepository are great for general-purpose persistence
of entities. But what if you have some requirements beyond basic persistence? Let’s
see how to customize the repositories to perform queries unique to your domain.

3.3.4 Customizing repositories

Imagine that in addition to the basic CRUD operations provided by CrudRepository,
you also need to fetch all the orders delivered to a given ZIP code. As it turns out,
this can easily be addressed by adding the following method declaration to Order-
Repository:

List<TacoOrder> findByDeliveryZip(String deliveryZip);

When generating the repository implementation, Spring Data examines each method
in the repository interface, parses the method name, and attempts to understand the
method’s purpose in the context of the persisted object (a TacoOrder, in this case). In
essence, Spring Data defines a sort of miniature domain-specific language (DSL),
where persistence details are expressed in repository method signatures.

 Spring Data knows that this method is intended to find Orders, because you’ve
parameterized CrudRepository with TacoOrder. The method name, findByDelivery-
Zip(), makes it clear that this method should find all TacoOrder entities by matching
their deliveryZip property with the value passed in as a parameter to the method.

 The findByDeliveryZip() method is simple enough, but Spring Data can han-
dle even more interesting method names as well. Repository methods are composed

91Persisting data with Spring Data JPA
of a verb, an optional subject, the word By, and a predicate. In the case of findBy-
DeliveryZip(), the verb is find and the predicate is DeliveryZip; the subject isn’t
specified and is implied to be a TacoOrder.

 Let’s consider another, more complex example. Suppose that you need to query
for all orders delivered to a given ZIP code within a given date range. In that case, the
following method, when added to OrderRepository, might prove useful:

List<TacoOrder> readOrdersByDeliveryZipAndPlacedAtBetween(
 String deliveryZip, Date startDate, Date endDate);

Figure 3.2 illustrates how Spring Data parses and understands the readOrdersBy-
DeliveryZipAndPlacedAtBetween() method when generating the repository implemen-
tation. As you can see, the verb in readOrdersByDeliveryZipAndPlacedAtBetween()
is read. Spring Data also understands find, read, and get as synonymous for fetching
one or more entities. Alternatively, you can also use count as the verb if you want the
method to return only an int with the count of matching entities.

Although the subject of the method is optional, here it says Orders. Spring Data
ignores most words in a subject, so you could name the method readPuppiesBy… and
it would still find TacoOrder entities, because that is the type that CrudRepository is
parameterized with.

 The predicate follows the word By in the method name and is the most interesting
part of the method signature. In this case, the predicate refers to two TacoOrder prop-
erties: deliveryZip and placedAt. The deliveryZip property must be equal to the
value passed into the first parameter of the method. The keyword Between indicates
that the value of deliveryZip must fall between the values passed into the last two
parameters of the method.

 In addition to an implicit Equals operation and the Between operation, Spring
Data method signatures can also include any of the following operators:

readOrdersByDeliveryZipAndPlacedAtBetween()

This method will read
data (“get” and “find” are

also allowed here).

Match .deliveryZip or
.delivery.zip property.

Match .placedAt or
.placed.at property.

Signifies the start of
properties to match The value must fall

between the given
values.

...and...

Figure 3.2 Spring Data parses repository method signatures to
determine the query that should be performed.

92 CHAPTER 3 Working with data
 IsAfter, After, IsGreaterThan, GreaterThan
 IsGreaterThanEqual, GreaterThanEqual
 IsBefore, Before, IsLessThan, LessThan
 IsLessThanEqual, LessThanEqual
 IsBetween, Between
 IsNull, Null
 IsNotNull, NotNull
 IsIn, In
 IsNotIn, NotIn
 IsStartingWith, StartingWith, StartsWith
 IsEndingWith, EndingWith, EndsWith
 IsContaining, Containing, Contains
 IsLike, Like
 IsNotLike, NotLike
 IsTrue, True
 IsFalse, False
 Is, Equals
 IsNot, Not
 IgnoringCase, IgnoresCase

As alternatives for IgnoringCase and IgnoresCase, you can place either AllIgnoring-
Case or AllIgnoresCase on the method to ignore case for all String comparisons.
For example, consider the following method:

List<TacoOrder> findByDeliveryToAndDeliveryCityAllIgnoresCase(
 String deliveryTo, String deliveryCity);

Finally, you can also place OrderBy at the end of the method name to sort the results
by a specified column. For example, to order by the deliveryTo property, use the fol-
lowing code:

List<TacoOrder> findByDeliveryCityOrderByDeliveryTo(String city);

Although the naming convention can be useful for relatively simple queries, it doesn’t
take much imagination to see that method names could get out of hand for more
complex queries. In that case, feel free to name the method anything you want and
annotate it with @Query to explicitly specify the query to be performed when the
method is called, as this example shows:

@Query("Order o where o.deliveryCity='Seattle'")
List<TacoOrder> readOrdersDeliveredInSeattle();

In this simple usage of @Query, you ask for all orders delivered in Seattle. But you can
use @Query to perform virtually any JPA query you can dream up, even when it’s diffi-
cult or impossible to achieve the query by following the naming convention.

93Summary
 Custom query methods also work with Spring Data JDBC but with the following
key differences:

 All custom query methods require @Query. This is because, unlike JPA, there’s
no mapping metadata to help Spring Data JDBC automatically infer the query
from the method name.

 All queries specified in @Query must be SQL queries, not JPA queries.

In the next chapter, we’ll expand our use of Spring Data to work with nonrelational
databases. When we do, you’ll see that custom query methods work very similarly,
although the query language used in @Query will be specific to the underlying database.

Summary
 Spring’s JdbcTemplate greatly simplifies working with JDBC.
 PreparedStatementCreator and KeyHolder can be used together when you

need to know the value of a database-generated ID.
 Spring Data JDBC and Spring Data JPA make working with relational data as

easy as writing a repository interface.

Working with
nonrelational data
They say that variety is the spice of life.
 You probably have a favorite flavor of ice cream. It’s that one flavor that you

choose the most often because it satisfies that creamy craving more than any other.
But most people, despite having a favorite flavor, try different flavors from time to
time to mix things up.

 Databases are like ice cream. For decades, the relational database has been the
favorite flavor for storing data. But these days, we have more options available than
ever before. So-called “NoSQL” databases (https://aws.amazon.com/nosql/) offer
different concepts and structures in which data can be stored. And although the
choice may still be somewhat based on taste, some databases are better suited for
persisting different kinds of data than others.

 Fortunately, Spring Data has you covered for many of the NoSQL databases,
including MongoDB, Cassandra, Couchbase, Neo4j, Redis, and many more. And
fortunately, the programming model is nearly identical, regardless of which data-
base you choose.

This chapter covers
 Persisting data to Cassandra

 Data modeling in Cassandra

 Working with document data in MongoDB
94

https://aws.amazon.com/nosql/

95Working with Cassandra repositories
 There’s not enough space in this chapter to cover all of the databases that Spring
Data supports. But to give you a sample of Spring Data’s other “flavors,” we’ll look at
two popular NoSQL databases, Cassandra and MongoDB, and see how to create
repositories to persist data to them. Let’s start by looking at how to create Cassandra
repositories with Spring Data.

4.1 Working with Cassandra repositories
Cassandra is a distributed, high-performance, always available, eventually consistent,
partitioned-column-store, NoSQL database.

 That’s a mouthful of adjectives to describe a database, but each one accurately
speaks to the power of working with Cassandra. To put it in simpler terms, Cassandra
deals in rows of data written to tables, which are partitioned across one-to-many dis-
tributed nodes. No single node carries all the data, but any given row may be repli-
cated across multiple nodes, thus eliminating any single point of failure.

 Spring Data Cassandra provides automatic repository support for the Cassandra
database that’s quite similar to—and yet quite different from—what’s offered by Spring
Data JPA for relational databases. In addition, Spring Data Cassandra offers annotations
for mapping application domain types to the backing database structures.

 Before we explore Cassandra any further, it’s important to understand that
although Cassandra shares many concepts similar to relational databases like Oracle
and SQL Server, Cassandra isn’t a relational database and is in many ways quite a
different beast. I’ll explain the idiosyncrasies of Cassandra as they pertain to working
with Spring Data. But I encourage you to read Cassandra’s own documentation
(http://cassandra.apache.org/doc/latest/) for a thorough understanding of what
makes it tick.

 Let’s get started by enabling Spring Data Cassandra in the Taco Cloud project.

4.1.1 Enabling Spring Data Cassandra

To get started using Spring Data Cassandra, you’ll need to add the Spring Boot starter
dependency for nonreactive Spring Data Cassandra. There are actually two separate
Spring Data Cassandra starter dependencies to choose from: one for reactive data per-
sistence and one for standard, nonreactive persistence.

 We’ll talk more about writing reactive repositories later in chapter 15. For now,
though, we’ll use the nonreactive starter in our build as shown here:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-cassandra</artifactId>
</dependency>

This dependency is also available from the Initializr by checking the Cassandra
check box.

 It’s important to understand that this dependency is in lieu of the Spring Data JPA
starter or Spring Data JDBC dependencies we used in the previous chapter. Instead of

http://cassandra.apache.org/doc/latest/

96 CHAPTER 4 Working with nonrelational data
persisting Taco Cloud data to a relational database with JPA or JDBC, you’ll be using
Spring Data to persist data to a Cassandra database. Therefore, you’ll want to remove
the Spring Data JPA or Spring Data JDBC starter dependencies and any relational
database dependencies (such as JDBC drivers or the H2 dependency) from the build.

 The Spring Data Cassandra starter dependency brings a handful of dependencies
to the project, specifically, the Spring Data Cassandra library. As a result of Spring
Data Cassandra being in the runtime classpath, autoconfiguration for creating Cassan-
dra repositories is triggered. This means you’re able to begin writing Cassandra repos-
itories with minimal explicit configuration.

 Cassandra operates as a cluster of nodes that together act as a complete database
system. If you don’t already have a Cassandra cluster to work with, you can start a single-
node cluster for development purposes using Docker like this:

$ docker network create cassandra-net
$ docker run --name my-cassandra \
 --network cassandra-net \
 -p 9042:9042 \
 -d cassandra:latest

This starts the single-node cluster and exposes the node’s port (9042) on the host
machine so that your application can access it.

 You’ll need to provide a small amount of configuration, though. At the very least,
you’ll need to configure the name of a keyspace within which your repositories will
operate. To do that, you’ll first need to create such a keyspace.

NOTE In Cassandra, a keyspace is a grouping of tables in a Cassandra node. It’s
roughly analogous to how tables, views, and constraints are grouped in a rela-
tional database.

Although it’s possible to configure Spring Data Cassandra to create the keyspace auto-
matically, it’s typically much easier to manually create it yourself (or to use an existing
keyspace). Using the Cassandra CQL (Cassandra Query Language) shell, you can cre-
ate a keyspace for the Taco Cloud application. You can start the CQL shell using
Docker like this:

$ docker run -it --network cassandra-net --rm cassandra cqlsh my-cassandra

NOTE If this command fails to start up the CQL shell with an error indicating
“Unable to connect to any servers,” wait a minute or two and try again. You
need to be sure that the Cassandra cluster is fully started before the CQL shell
can connect to it.

When the shell is ready, use the create keyspace command like this:

cqlsh> create keyspace tacocloud
 ... with replication={'class':'SimpleStrategy', 'replication_factor':1}
 ... and durable_writes=true;

97Working with Cassandra repositories
Put simply, this will create a keyspace named tacocloud with simple replication and
durable writes. By setting the replication factor to 1, you ask Cassandra to keep one
copy of each row. The replication strategy determines how replication is handled. The
SimpleStrategy replication strategy is fine for single data center use (and for demo
code), but you might consider the NetworkTopologyStrategy if you have your Cas-
sandra cluster spread across multiple data centers. I refer you to the Cassandra docu-
mentation for more details of how replication strategies work and alternative ways of
creating keyspaces.

 Now that you’ve created a keyspace, you need to configure the spring.data
.cassandra.keyspace-name property to tell Spring Data Cassandra to use that key-
space, as shown next:

spring:
 data:
 cassandra:
 keyspace-name: taco_cloud
 schema-action: recreate
 local-datacenter: datacenter1

Here, you also set the spring.data.cassandra.schema-action to recreate. This set-
ting is very useful for development purposes because it ensures that any tables and
user-defined types will be dropped and recreated every time the application starts.
The default value, none, takes no action against the schema and is useful in produc-
tion settings where you’d rather not drop all tables whenever an application starts up.

 Finally, the spring.data.cassandra.local-datacenter property identifies the
name of the local data center for purposes of setting Cassandra’s load-balancing pol-
icy. In a single-node setup, "datacenter1" is the value to use. For more information
on Cassandra load-balancing policies and how to set the local data center, see the
DataStax Cassandra driver’s reference documentation (http://mng.bz/XrQM).

 These are the only properties you’ll need for working with a locally running Cas-
sandra database. In addition to these two properties, however, you may wish to set oth-
ers, depending on how you’ve configured your Cassandra cluster.

 By default, Spring Data Cassandra assumes that Cassandra is running locally and
listening on port 9042. If that’s not the case, as in a production setting, you may want
to set the spring.data.cassandra.contact-points and spring.data.cassandra
.port properties as follows:

spring:
 data:
 cassandra:
 keyspace-name: tacocloud
 local-datacenter: datacenter1
 contact-points:
 - casshost-1.tacocloud.com
 - casshost-2.tacocloud.com
 - casshost-3.tacocloud.com
 port: 9043

http://mng.bz/XrQM

98 CHAPTER 4 Working with nonrelational data
Notice that the spring.data.cassandra.contact-points property is where you iden-
tify the hostname(s) of Cassandra. A contact point is the host where a Cassandra node
is running. By default, it’s set to localhost, but you can set it to a list of hostnames. It
will try each contact point until it’s able to connect to one. This is to ensure that
there’s no single point of failure in the Cassandra cluster and that the application will
be able to connect with the cluster through one of the given contact points.

 You may also need to specify a username and password for your Cassandra cluster.
This can be done by setting the spring.data.cassandra.username and spring.data
.cassandra.password properties, as shown next:

spring:
 data:
 cassandra:
 ...
 username: tacocloud
 password: s3cr3tP455w0rd

These are the only properties you’ll need for working with a locally running Cassan-
dra database. In addition to these two properties, however, you may wish to set others,
depending on how you’ve configured your Cassandra cluster.

 Now that Spring Data Cassandra is enabled and configured in your project, you’re
almost ready to map your domain types to Cassandra tables and write repositories. But
first, let’s step back and consider a few basic points of Cassandra data modeling.

4.1.2 Understanding Cassandra data modeling

As I mentioned, Cassandra is quite different from a relational database. Before you
can start mapping your domain types to Cassandra tables, it’s important to understand
a few of the ways that Cassandra data modeling is different from how you might model
your data for persistence in a relational database.

 A few of the most important things to understand about Cassandra data modeling
follow:

 Cassandra tables may have any number of columns, but not all rows will neces-
sarily use all of those columns.

 Cassandra databases are split across multiple partitions. Any row in a given table
may be managed by one or more partitions, but it’s unlikely that all partitions
will have all rows.

 A Cassandra table has two kinds of keys: partition keys and clustering keys. Hash
operations are performed on each row’s partition key to determine which parti-
tion(s) that row will be managed by. Clustering keys determine the order in
which the rows are maintained within a partition (not necessarily the order in
which they may appear in the results of a query). Refer to Cassandra documen-
tation (http://mng.bz/yJ6E) for a more detailed explanation of data modeling
in Cassandra, including partitions, clusters, and their respective keys.

http://mng.bz/yJ6E

99Working with Cassandra repositories
 Cassandra is highly optimized for read operations. As such, it’s common and
desirable for tables to be highly denormalized and for data to be duplicated
across multiple tables. (For example, customer information may be kept in a
customer table as well as duplicated in a table containing orders placed by
customers.)

Suffice it to say that adapting the Taco Cloud domain types to work with Cassandra
won’t be a matter of simply swapping out a few JPA annotations for Cassandra annota-
tions. You’ll have to rethink how you model the data.

4.1.3 Mapping domain types for Cassandra persistence

In chapter 3, you marked up your domain types (Taco, Ingredient, TacoOrder, and so
on) with annotations provided by the JPA specification. These annotations mapped
your domain types as entities to be persisted to a relational database. Although those
annotations won’t work for Cassandra persistence, Spring Data Cassandra provides its
own set of mapping annotations for a similar purpose.

 Let’s start with the Ingredient class, because it’s the simplest to map for Cassan-
dra. The new Cassandra-ready Ingredient class looks like this:

package tacos;

import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Table("ingredients")
public class Ingredient {

 @PrimaryKey
 private String id;
 private String name;
 private Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

The Ingredient class seems to contradict everything I said about just swapping out
a few annotations. Rather than annotating the class with @Entity as you did for JPA

100 CHAPTER 4 Working with nonrelational data

"
persistence, it’s annotated with @Table to indicate that ingredients should be per-
sisted to a table named ingredients. And rather than annotate the id property with
@Id, this time it’s annotated with @PrimaryKey. So far, it seems that you’re only swap-
ping out a few annotations.

 But don’t let the Ingredient mapping fool you. The Ingredient class is one of
your simplest domain types. Things get more interesting when you map the Taco class
for Cassandra persistence, as shown in the next listing.

package tacos;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import org.springframework.data.cassandra.core.cql.Ordering;
import org.springframework.data.cassandra.core.cql.PrimaryKeyType;
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKeyColumn;
import org.springframework.data.cassandra.core.mapping.Table;

import com.datastax.oss.driver.api.core.uuid.Uuids;

import lombok.Data;

@Data
@Table("tacos")
public class Taco {

 @PrimaryKeyColumn(type=PrimaryKeyType.PARTITIONED)
 private UUID id = Uuids.timeBased();

 @NotNull
 @Size(min = 5, message = "Name must be at least 5 characters long")
 private String name;

 @PrimaryKeyColumn(type=PrimaryKeyType.CLUSTERED,
 ordering=Ordering.DESCENDING)
 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 @Column("ingredients")
 private List<IngredientUDT> ingredients = new ArrayList<>();

 public void addIngredient(Ingredient ingredient) {
 this.ingredients.add(TacoUDRUtils.toIngredientUDT(ingredient));
 }
}

Listing 4.1 Annotating the Taco class for Cassandra persistence

Persists to the
"tacos" table

Defines the
partition key

Defines the
clustering key

Maps the list to
the "ingredients
column

101Working with Cassandra repositories
As you can see, mapping the Taco class is a bit more involved. As with Ingredient, the
@Table annotation is used to identify tacos as the name of the table that tacos should
be written to. But that’s the only thing similar to Ingredient.

 The id property is still your primary key, but it’s only one of two primary key col-
umns. More specifically, the id property is annotated with @PrimaryKeyColumn with a
type of PrimaryKeyType.PARTITIONED. This specifies that the id property serves as
the partition key, used to determine to which Cassandra partition(s) each row of taco
data will be written.

 You’ll also notice that the id property is now a UUID instead of a Long. Although
it’s not required, properties that hold a generated ID value are commonly of type
UUID. Moreover, the UUID is initialized with a time-based UUID value for new Taco
objects (but which may be overridden when reading an existing Taco from the
database).

 A little further down, you see the createdAt property that’s mapped as another
primary key column. But in this case, the type attribute of @PrimaryKeyColumn is set
to PrimaryKeyType.CLUSTERED, which designates the createdAt property as a cluster-
ing key. As mentioned earlier, clustering keys are used to determine the ordering of
rows within a partition. More specifically, the ordering is set to descending order—
therefore, within a given partition, newer rows appear first in the tacos table.

 Finally, the ingredients property is now a List of IngredientUDT objects instead
of a List of Ingredient objects. As you’ll recall, Cassandra tables are highly denor-
malized and may contain data that’s duplicated from other tables. Although the
ingredient table will serve as the table of record for all available ingredients, the
ingredients chosen for a taco will be duplicated in the ingredients column. Rather
than simply reference one or more rows in the ingredients table, the ingredients
property will contain full data for each chosen ingredient.

 But why do you need to introduce a new IngredientUDT class? Why can’t you just
reuse the Ingredient class? Put simply, columns that contain collections of data, such
as the ingredients column, must be collections of native types (integers, strings, and
so on) or user-defined types.

 In Cassandra, user-defined types enable you to declare table columns that are
richer than simple native types. Often they’re used as a denormalized analog for
relational foreign keys. In contrast to foreign keys, which only hold a reference to a
row in another table, columns with user-defined types actually carry data that may
be copied from a row in another table. In the case of the ingredients column in
the tacos table, it will contain a collection of data structures that define the ingredi-
ents themselves.

 You can’t use the Ingredient class as a user-defined type, because the @Table
annotation has already mapped it as an entity for persistence in Cassandra. Therefore,
you must create a new class to define how ingredients will be stored in the ingredients
column of the taco table. IngredientUDT (where UDT means user-defined type) is the
class for the job, as shown here:

102 CHAPTER 4 Working with nonrelational data
package tacos;

import org.springframework.data.cassandra.core.mapping.UserDefinedType;

import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access = AccessLevel.PRIVATE, force = true)
@UserDefinedType("ingredient")
public class IngredientUDT {

 private final String name;

 private final Ingredient.Type type;

}

Although IngredientUDT looks a lot like Ingredient, its mapping requirements are
much simpler. It’s annotated with @UserDefinedType to identify it as a user-defined
type in Cassandra. But otherwise, it’s a simple class with a few properties.

 You’ll also note that the IngredientUDT class doesn’t include an id property.
Although it could include a copy of the id property from the source Ingredient,
that’s not necessary. In fact, the user-defined type may include any properties you
wish—it doesn’t need to be a one-to-one mapping with any table definition.

 I realize that it might be difficult to visualize how data in a user-defined type relates
to data that’s persisted to a table. Figure 4.1 shows the data model for the entire Taco
Cloud database, including user-defined types.

h
a
s
 l
is

t
o
f

TacoOrder

TacoUDT

Stored in “orders” table

h
a
s
 l
is

t
o
fhas

list of

Taco

IngredientIngredientUDT Ingredient

copied from

Stored in “tacos” table

Stored in “ingredients” table
copied

from

Figure 4.1 Instead of using foreign keys and joins, Cassandra tables are denormalized,
with user-defined types containing data copied from related tables.

103Working with Cassandra repositories
Specific to the user-defined type that you just created, notice how Taco has a list of
IngredientUDT objects, which holds data copied from Ingredient objects. When a
Taco is persisted, it’s the Taco object and the list of IngredientUDT objects that’s per-
sisted to the tacos table. The list of IngredientUDT objects is persisted entirely within
the ingredients column.

 Another way of looking at this that might help you understand how user-defined
types are used is to query the database for rows from the tacos table. Using CQL and
the cqlsh tool that comes with Cassandra, you see the following results:

cqlsh:tacocloud> select id, name, createdAt, ingredients from tacos;

 id | name | createdat | ingredients
----------+-----------+-----------+--
 827390...| Carnivore | 2018-04...| [{name: 'Flour Tortilla', type: 'WRAP'},
 {name: 'Carnitas', type: 'PROTEIN'},
 {name: 'Sour Cream', type: 'SAUCE'},
 {name: 'Salsa', type: 'SAUCE'},
 {name: 'Cheddar', type: 'CHEESE'}]

(1 rows)

As you can see, the id, name, and createdat columns contain simple values. In that
regard, they aren’t much different than what you’d expect from a similar query
against a relational database. But the ingredients column is a little different. Because
it’s defined as containing a collection of the user-defined ingredient type (defined by
IngredientUDT), its value appears as a JSON array filled with JSON objects.

 You likely noticed other user-defined types in figure 4.1. You’ll certainly be creat-
ing some more as you continue mapping your domain to Cassandra tables, including
some that will be used by the TacoOrder class. The next listing shows the TacoOrder
class, modified for Cassandra persistence.

package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;

import javax.validation.constraints.Digits;
import javax.validation.constraints.NotBlank;
import javax.validation.constraints.Pattern;

import org.hibernate.validator.constraints.CreditCardNumber;
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;

import com.datastax.oss.driver.api.core.uuid.Uuids;

Listing 4.2 Mapping the TacoOrder class to a Cassandra orders table

104 CHAPTER 4 Working with nonrelational data
import lombok.Data;

@Data
@Table("orders")
public class TacoOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 @PrimaryKey
 private UUID id = Uuids.timeBased();

 private Date placedAt = new Date();

 // delivery and credit card properties omitted for brevity's sake

 @Column("tacos")
 private List<TacoUDT> tacos = new ArrayList<>();

 public void addTaco(TacoUDT taco) {
 this.tacos.add(taco);
 }

}

Listing 4.2 purposefully omits many of the properties of TacoOrder that don’t lend
themselves to a discussion of Cassandra data modeling. What’s left are a few proper-
ties and mappings, similar to how Taco was defined. @Table is used to map TacoOrder
to the orders table, much as @Table has been used before. In this case, you’re uncon-
cerned with ordering, so the id property is simply annotated with @PrimaryKey, desig-
nating it as both a partition key and a clustering key with default ordering.

 The tacos property is of some interest in that it’s a List<TacoUDT> instead of a list of
Taco objects. The relationship between TacoOrder and Taco/TacoUDT here is similar to
the relationship between Taco and Ingredient/IngredientUDT. That is, rather than
joining data from several rows in a separate table through foreign keys, the orders table
will contain all of the pertinent taco data, optimizing the table for quick reads.

 The TacoUDT class is quite similar to the IngredientUDT class, although it does
include a collection that references another user-defined type, as follows:

package tacos;

import java.util.List;
import org.springframework.data.cassandra.core.mapping.UserDefinedType;
import lombok.Data;

@Data
@UserDefinedType("taco")
public class TacoUDT {

 private final String name;
 private final List<IngredientUDT> ingredients;

}

Maps to the
orders table

Declares the
primary key

Maps a list to the
tacos column

105Working with Cassandra repositories
Although it would have been nice to reuse the same domain classes you created in chap-
ter 3, or at most to swap out some JPA annotations for Cassandra annotations, the
nature of Cassandra persistence is such that it requires you to rethink how your data is
modeled. But now that you’ve mapped your domain, you’re ready to write repositories.

4.1.4 Writing Cassandra repositories

As you saw in chapter 3, writing a repository with Spring Data involves simply declar-
ing an interface that extends one of Spring Data’s base repository interfaces and
optionally declaring additional query methods for custom queries. As it turns out,
writing Cassandra repositories isn’t much different.

 In fact, there’s very little that you’ll need to change in the repositories we’ve
already written to make them work for Cassandra persistence. For example, consider
the following IngredientRepository we created in chapter 3:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

By extending CrudRepository as shown here, IngredientRepository is ready to per-
sist Ingredient objects whose ID property (or, in the case of Cassandra, the primary
key property) is a String. That’s perfect! No changes are needed for Ingredient-
Repository.

 The changes required for OrderRepository are only slightly more involved.
Instead of a Long parameter, the ID parameter type specified when extending Crud-
Repository will be changed to UUID as follows:

package tacos.data;

import java.util.UUID;

import org.springframework.data.repository.CrudRepository;

import tacos.TacoOrder;

public interface OrderRepository
 extends CrudRepository<TacoOrder, UUID> {

}

There’s a lot of power in Cassandra, and when it’s teamed up with Spring Data, you
can wield that power in your Spring applications. But let’s shift our attention to
another database for which Spring Data repository support is available: MongoDB.

106 CHAPTER 4 Working with nonrelational data
4.2 Writing MongoDB repositories
MongoDB is a another well-known NoSQL database. Whereas Cassandra is a column-
store database, MongoDB is considered a document database. More specifically,
MongoDB stores documents in BSON (Binary JSON) format, which can be queried
for and retrieved in a way that’s roughly similar to how you might query for data in any
other database.

 As with Cassandra, it’s important to understand that MongoDB isn’t a relational
database. The way you manage your MongoDB server cluster, as well as how you
model your data, requires a different mindset than when working with other kinds of
databases.

 That said, working with MongoDB and Spring Data isn’t dramatically different
from how you might use Spring Data for working with JPA or Cassandra. You’ll anno-
tate your domain classes with annotations that map the domain type to a document
structure. And you’ll write repository interfaces that very much follow the same pro-
gramming model as those you’ve seen for JPA and Cassandra. Before you can do any
of that, though, you must enable Spring Data MongoDB in your project.

4.2.1 Enabling Spring Data MongoDB

To get started with Spring Data MongoDB, you’ll need to add the Spring Data MongoDB
starter to the project build. As with Spring Data Cassandra, Spring Data MongoDB has
two separate starters to choose from: one reactive and one nonreactive. We’ll look at
the reactive options for persistence in chapter 13. For now, add the following depen-
dency to the build to work with the nonreactive MongoDB starter:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>
 spring-boot-starter-data-mongodb
 </artifactId>
</dependency>

This dependency is also available from the Spring Initializr by checking the MongoDB
check box under NoSQL.

 By adding the starter to the build, autoconfiguration will be triggered to enable
Spring Data support for writing automatic repository interfaces, such as those you
wrote for JPA in chapter 3 or for Cassandra earlier in this chapter.

 By default, Spring Data MongoDB assumes that you have a MongoDB server running
locally and listening on port 27017. If you have Docker installed on your machine, an
easy way to get a MongoDB server running is with the following command line:

$ docker run -p 27017:27017 -d mongo:latest

But for convenience in testing or developing, you can choose to work with an embed-
ded Mongo database instead. To do that, add the following Flapdoodle embedded
MongoDB dependency to your build:

107Writing MongoDB repositories
<dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
 <!-- <scope>test</scope> -->
</dependency>

The Flapdoodle embedded database affords you all of the same convenience of work-
ing with an in-memory Mongo database as you’d get with H2 when working with rela-
tional data. That is, you won’t need to have a separate database running, but all data
will be wiped clean when you restart the application.

 Embedded databases are fine for development and testing, but once you take your
application to production, you’ll want to be sure you set a few properties to let Spring
Data MongoDB know where and how your production Mongo database can be
accessed, as shown next:

spring:
 data:
 mongodb:
 host: mongodb.tacocloud.com
 port: 27017
 username: tacocloud
 password: s3cr3tp455w0rd
 database: tacoclouddb

Not all of these properties are required, but they’re available to help point Spring
Data MongoDB in the right direction in the event that your Mongo database isn’t run-
ning locally. Breaking it down, here’s what each property configures:

 spring.data.mongodb.host—The hostname where Mongo is running (default:
localhost)

 spring.data.mongodb.port—The port that the Mongo server is listening on
(default: 27017)

 spring.data.mongodb.username—The username for accessing a secured Mongo
database

 spring.data.mongodb.password—The password for accessing a secured Mongo
database

 spring.data.mongodb.database—The database name (default: test)

Now that you have Spring Data MongoDB enabled in your project, you need to anno-
tate your domain objects for persistence as documents in MongoDB.

4.2.2 Mapping domain types to documents

Spring Data MongoDB offers a handful of annotations that are useful for mapping
domain types to document structures to be persisted in MongoDB. Although Spring
Data MongoDB provides a half-dozen annotations for mapping, only the following
four are useful for most common use cases:

108 CHAPTER 4 Working with nonrelational data
 @Id—Designates a property as the document ID (from Spring Data Commons)
 @Document—Declares a domain type as a document to be persisted to MongoDB
 @Field—Specifies the field name (and, optionally, the order) for storing a

property in the persisted document
 @Transient—Specifies that a property is not to be persisted

Of those three annotations, only the @Id and @Document annotations are strictly
required. Unless you specify otherwise, properties that aren’t annotated with @Field
or @Transient will assume a field name equal to the property name.

 Applying these annotations to the Ingredient class, you get the following:

package tacos;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@Document
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
public class Ingredient {

 @Id
 private String id;
 private String name;
 private Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, you place the @Document annotation at the class level to indicate that
Ingredient is a document entity that can be written to and read from a Mongo data-
base. By default, the collection name (the Mongo analog to a relational database table)
is based on the class name, with the first letter lowercase. Because you haven’t specified
otherwise, Ingredient objects will be persisted to a collection named ingredient. But
you can change that by setting the collection attribute of @Document as follows:

@Data
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Document(collection="ingredients")
public class Ingredient {
...
}

109Writing MongoDB repositories
You’ll also notice that the id property has been annotated with @Id. This designates
the property as being the ID of the persisted document. You can use @Id on any prop-
erty whose type is Serializable, including String and Long. In this case, you’re
already using the String-defined id property as a natural identifier, so there’s no
need to change it to any other type.

 So far, so good. But you’ll recall from earlier in this chapter that Ingredient was
the easy domain type to map for Cassandra. The other domain types, such as Taco,
were a bit more challenging. Let’s look at how you can map the Taco class to see what
surprises it might hold.

 MongoDB’s approach to document persistence lends itself very well to the domain-
driven-design way of applying persistence at the aggregate root level. Documents in
MongoDB tend to be defined as aggregate roots, with members of the aggregate as
subdocuments.

 What that means for Taco Cloud is that because Taco is only ever persisted as a
member of the TacoOrder-rooted aggregate, the Taco class doesn’t need to be anno-
tated as a @Document, nor does it need an @Id property. The Taco class can remain
clean of any persistence annotations, as shown here:

package tacos;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import lombok.Data;

@Data
public class Taco {

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients = new ArrayList<>();

 public void addIngredient(Ingredient ingredient) {
 this.ingredients.add(ingredient);
 }

}

The TacoOrder class, however, being the root of the aggregate, will need to be anno-
tated with @Document and have an @Id property, as follows:

110 CHAPTER 4 Working with nonrelational data
package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.validation.constraints.Digits;
import javax.validation.constraints.NotBlank;
import javax.validation.constraints.Pattern;

import org.hibernate.validator.constraints.CreditCardNumber;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

import lombok.Data;

@Data
@Document
public class TacoOrder implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 private String id;

 private Date placedAt = new Date();

 // other properties omitted for brevity's sake

 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }

}

For brevity’s sake, I’ve snipped out the various delivery and credit card fields. But
from what’s left, it’s clear that all you need is @Document and @Id, as with the other
domain types.

 Notice, however, that the id property has been changed to be a String (as
opposed to a Long in the JPA version or a UUID in the Cassandra version). As I said ear-
lier, @Id can be applied to any Serializable type. But if you choose to use a String
property as the ID, you get the benefit of Mongo automatically assigning a value to it
when it’s saved (assuming that it’s null). By choosing String, you get a database-
managed ID assignment and needn’t worry about setting that property manually.

 Although there are some more-advanced and unusual use cases that require addi-
tional mapping, you’ll find that for most cases, @Document and @Id, along with an
occasional @Field or @Transient, are sufficient for MongoDB mapping. They cer-
tainly do the job for the Taco Cloud domain types.

 All that’s left is to write the repository interfaces.

111Writing MongoDB repositories
4.2.3 Writing MongoDB repository interfaces

Spring Data MongoDB offers automatic repository support similar to what’s provided
by the Spring Data JPA and Spring Data Cassandra.

 You’ll start by defining a repository for persisting Ingredient objects as docu-
ments. As before, you can write IngredientRepository to extend CrudRepository, as
shown here:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

Wait a minute! That looks identical to the IngredientRepository interface you wrote
in section 4.1 for Cassandra! Indeed, it’s the same interface, with no changes. This
highlights one of the benefits of extending CrudRepository—it’s more portable
across various database types and works equally well for MongoDB as for Cassandra.

 Moving on to the OrderRepository interface, you can see in the following snippet
that it’s quite straightforward:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.TacoOrder;

public interface OrderRepository
 extends CrudRepository<TacoOrder, String> {

}

Just like IngredientRepository, OrderRepository extends CrudRepository to gain
the optimizations afforded in its insert() methods. Otherwise, there’s nothing terri-
bly special about this repository, compared to some of the other repositories you’ve
defined thus far. Note, however, that the ID parameter when extending CrudRepository
is now String instead of Long (as for JPA) or UUID (as for Cassandra). This reflects the
change we made in TacoOrder to support automatic assignment of IDs.

 In the end, working with Spring Data MongoDB isn’t drastically different from the
other Spring Data projects we’ve worked with. The domain types are annotated differ-
ently. But aside from the ID parameter specified when extending CrudRepository, the
repository interfaces are nearly identical.

112 CHAPTER 4 Working with nonrelational data
Summary
 Spring Data supports repositories for a variety of NoSQL databases, including

Cassandra, MongoDB, Neo4j, and Redis.
 The programming model for creating repositories differs very little across dif-

ferent underlying databases.
 Working with nonrelational databases demands an understanding of how to

model data appropriately for how the database ultimately stores the data.

Securing Spring
Have you ever noticed that most people in television sitcoms don’t lock their
doors? In the days of Leave It to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that at a time when we’re concerned with pri-
vacy and security, we see television characters enabling unhindered access to their
apartments and homes.

 Information is probably the most valuable item we now have; crooks are looking
for ways to steal our data and identities by sneaking into unsecured applications. As
software developers, we must take steps to protect the information that resides in
our applications. Whether it’s an email account protected with a username-password
pair or a brokerage account protected with a trading PIN, security is a crucial aspect
of most applications.

This chapter covers
 Autoconfiguring Spring Security

 Defining custom user storage

 Customizing the login page

 Securing against CSRF attacks

 Knowing your user
113

114 CHAPTER 5 Securing Spring
5.1 Enabling Spring Security
The very first step in securing your Spring application is to add the Spring Boot secu-
rity starter dependency to your build. In the project’s pom.xml file, add the following
<dependency> entry:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

If you’re using Spring Tool Suite, this is even easier. Right-click on the pom.xml file and
select Edit Starters from the Spring context menu. In the starter dependencies dialog
box, select the Spring Security entry under the Security category, as shown in figure 5.1.

 Believe it or not, that dependency is the only thing that’s required to secure an
application. When the application starts, autoconfiguration will detect that Spring
Security is in the classpath and will set up some basic security configuration.

 If you want to try it out, fire up the application and try to visit the home page (or
any page, for that matter). You’ll be prompted for authentication with a rather plain
login page that looks something like figure 5.2.

TIP Going incognito: You may find it useful to set your browser to private or
incognito mode when manually testing security. This will ensure that you
have a fresh session each time you open a private/incognito window. You’ll
have to sign in to the application each time, but you can be assured that any
changes you’ve made in security are applied and that there aren’t any rem-
nants of an older session preventing you from seeing your changes.

To get past the login page, you’ll need to provide a username and password. The user-
name is user. As for the password, it’s randomly generated and written to the applica-
tion log file. The log entry will look something like this:

Using generated security password: 087cfc6a-027d-44bc-95d7-cbb3a798a1ea

Assuming you enter the username and password correctly, you’ll be granted access to
the application.

 It seems that securing Spring applications is pretty easy work. With the Taco Cloud
application secured, I suppose I could end this chapter now and move on to the next
topic. But before we get ahead of ourselves, let’s consider what kind of security auto-
configuration has provided.

 By doing nothing more than adding the security starter to the project build, you
get the following security features:

 All HTTP request paths require authentication.
 No specific roles or authorities are required.
 Authentication is prompted with a simple login page.
 There’s only one user; the username is user.

115Enabling Spring Security
Figure 5.1 Adding the security starter with Spring Tool Suite

116 CHAPTER 5 Securing Spring
This is a good start, but I think that the security needs of most applications (Taco
Cloud included) will be quite different from these rudimentary security features.

 You have more work to do if you’re going to properly secure the Taco Cloud appli-
cation. You’ll need to at least configure Spring Security to do the following:

 Provide a login page that is designed to match the website.
 Provide for multiple users, and enable a registration page so new Taco Cloud

customers can sign up.
 Apply different security rules for different request paths. The home page and

registration pages, for example, shouldn’t require authentication at all.

To meet your security needs for Taco Cloud, you’ll have to write some explicit config-
uration, overriding what autoconfiguration has given you. You’ll start by configuring a
proper user store so that you can have more than one user.

5.2 Configuring authentication
Over the years, several ways of configuring Spring Security have existed, including
lengthy XML configuration. Fortunately, several recent versions of Spring Security
have supported Java configuration, which is much easier to read and write.

 Before this chapter is finished, you’ll have configured all of your Taco Cloud secu-
rity needs in a Java configuration for Spring Security. But to get started, you’ll ease
into it by writing the configuration class shown in the following listing.

Figure 5.2 Spring Security gives you a plain login page for free.

117Configuring authentication
package tacos.security;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

@Configuration
public class SecurityConfig {

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

}

What does this barebones security configuration do for you? Not much, actually. The
main thing it does is declare a PasswordEncoder bean, which we’ll use both when cre-
ating new users and when authenticating users at login. In this case, we’re using
BCryptPasswordEncoder, one of a handful of password encoders provided by Spring
Security, including the following:

 BCryptPasswordEncoder—Applies bcrypt strong hashing encryption
 NoOpPasswordEncoder—Applies no encoding
 Pbkdf2PasswordEncoder—Applies PBKDF2 encryption
 SCryptPasswordEncoder—Applies Scrypt hashing encryption
 StandardPasswordEncoder—Applies SHA-256 hashing encryption

No matter which password encoder you use, it’s important to understand that the
password in the database is never decoded. Instead, the password that the user enters
at login is encoded using the same algorithm, and it’s then compared with the encoded
password in the database. That comparison is performed in the PasswordEncoder’s
matches() method.

Listing 5.1 A barebones configuration class for Spring Security

Which password encoder should you use?
Not all password encoders are created equal. Ultimately, you’ll need to weigh each
password encoder’s algorithm against your security goals and decide for yourself. But
you should avoid a couple of password encoders for production applications.

NoOpPasswordEncoder applies no encryption whatsoever. Therefore, although it may
be useful for testing, it is unsuitable for production use. And StandardPassword-
Encoder is not considered secure enough for password encryption and has, in fact,
been deprecated.

Instead, consider one of the other password encoders, any of which are more secure.
We’re going to use BCryptPasswordEncoder for the examples in this book.

118 CHAPTER 5 Securing Spring
In addition to the password encoder, we’ll fill in this configuration class with more
beans to define the specifics of security for our application. We’ll start by configuring
a user store that can handle more than one user.

 To configure a user store for authentication purposes, you’ll need to declare a
UserDetailsService bean. The UserDetailsService interface is relatively simple,
including only one method that must be implemented. Here’s what UserDetails-
Service looks like:

public interface UserDetailsService {

 UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException;

}

The loadUserByUsername() method accepts a username and uses it to look up a
UserDetails object. If no user can be found for the given username, then it will throw
a UsernameNotFoundException.

 As it turns out, Spring Security offers several out-of-the-box implementations of
UserDetailsService, including the following:

 An in-memory user store
 A JDBC user store
 An LDAP user store

Or, you can also create your own implementation to suit your application’s specific
security needs.

 To get started, let’s try out the in-memory implementation of UserDetailsService.

5.2.1 In-memory user details service

One place where user information can be kept is in memory. Suppose you have only a
handful of users, none of which are likely to change. In that case, it may be simple
enough to define those users as part of the security configuration.

 The following bean method shows how to create an InMemoryUserDetailsManager
with two users, “buzz” and “woody,” for that purpose.

@Bean
public UserDetailsService userDetailsService(PasswordEncoder encoder) {
 List<UserDetails> usersList = new ArrayList<>();
 usersList.add(new User(
 "buzz", encoder.encode("password"),
 Arrays.asList(new SimpleGrantedAuthority("ROLE_USER"))));
 usersList.add(new User(
 "woody", encoder.encode("password"),
 Arrays.asList(new SimpleGrantedAuthority("ROLE_USER"))));
 return new InMemoryUserDetailsManager(usersList);
}

Listing 5.2 Declaring users in an in-memory user details service bean

119Configuring authentication
Here, a list of Spring Security User objects are created, each with a username, pass-
word, and a list of one or more authorities. Then an InMemoryUserDetailsManager is
created using that list.

 If you try out the application now, you should be able to log in as either “woody” or
“buzz,” using password as the password.

 The in-memory user details service is convenient for testing purposes or for very
simple applications, but it doesn’t allow for easy editing of users. If you need to add,
remove, or change a user, you’ll have to make the necessary changes and then rebuild
and redeploy the application.

 For the Taco Cloud application, you want customers to be able to register with the
application and manage their own user accounts. That doesn’t fit with the limitations
of the in-memory user details service. So let’s take a look at how to create our own
implementation of UserDetailsService that allows for a user store database.

5.2.2 Customizing user authentication

In the previous chapter, you settled on using Spring Data JPA as your persistence
option for all taco, ingredient, and order data. It would thus make sense to persist
user data in the same way. If you do so, the data will ultimately reside in a relational
database, so you could use JDBC authentication. But it’d be even better to leverage
the Spring Data JPA repository used to store users.

 First things first, though. Let’s create the domain object and repository interface
that represents and persists user information.

DEFINING THE USER DOMAIN AND PERSISTENCE

When Taco Cloud customers register with the application, they’ll need to provide more
than just a username and password. They’ll also give you their full name, address, and
phone number. This information can be used for a variety of purposes, including pre-
populating the order form (not to mention potential marketing opportunities).

 To capture all of that information, you’ll create a User class, as follows.

package tacos;
import java.util.Arrays;
import java.util.Collection;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.
 SimpleGrantedAuthority;
import org.springframework.security.core.userdetails.UserDetails;
import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

Listing 5.3 Defining a user entity

120 CHAPTER 5 Securing Spring
@Entity
@Data
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@RequiredArgsConstructor
public class User implements UserDetails {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 private final String username;
 private final String password;
 private final String fullname;
 private final String street;
 private final String city;
 private final String state;
 private final String zip;
 private final String phoneNumber;

 @Override
 public Collection<? extends GrantedAuthority> getAuthorities() {
 return Arrays.asList(new SimpleGrantedAuthority("ROLE_USER"));
 }

 @Override
 public boolean isAccountNonExpired() {
 return true;
 }

 @Override
 public boolean isAccountNonLocked() {
 return true;
 }

 @Override
 public boolean isCredentialsNonExpired() {
 return true;
 }

 @Override
 public boolean isEnabled() {
 return true;
 }

}

The first thing to notice about this User type is that it’s not the same as the User class
we used when creating the in-memory user details service. This one has more details
about the user that we’ll need to fulfill taco orders, including the user’s address and
contact information.

 You’ve also probably noticed that the User class is a bit more involved than any of
the other entities defined in chapter 3. In addition to defining a handful of proper-
ties, User also implements the UserDetails interface from Spring Security.

121Configuring authentication
 Implementations of UserDetails will provide some essential user information to
the framework, such as what authorities are granted to the user and whether the user’s
account is enabled.

 The getAuthorities() method should return a collection of authorities granted
to the user. The various is* methods return a boolean to indicate whether the user’s
account is enabled, locked, or expired.

 For your User entity, the getAuthorities() method simply returns a collection
indicating that all users will have been granted ROLE_USER authority. And, at least for
now, Taco Cloud has no need to disable users, so all of the is* methods return true to
indicate that the users are active.

 With the User entity defined, you can now define the repository interface as follows:

package tacos.data;
import org.springframework.data.repository.CrudRepository;
import tacos.User;

public interface UserRepository extends CrudRepository<User, Long> {

 User findByUsername(String username);

}

In addition to the CRUD operations provided by extending CrudRepository, User-
Repository defines a findByUsername() method that you’ll use in the user details ser-
vice to look up a User by their username.

 As you learned in chapter 3, Spring Data JPA automatically generates the imple-
mentation of this interface at run time. Therefore, you’re now ready to write a custom
user details service that uses this repository.

CREATING A USER DETAILS SERVICE

As you’ll recall, the UserDetailsService interface defines only a single loadUserBy-
Username() method. That means it is a functional interface and can be implemented
as a lambda instead of as a full-blown implementation class. Because all we really need
is for our custom UserDetailsService to delegate to the UserRepository, it can be
simply declared as a bean using the following configuration method.

@Bean
public UserDetailsService userDetailsService(UserRepository userRepo) {
 return username -> {
 User user = userRepo.findByUsername(username);
 if (user != null) return user;

 throw new UsernameNotFoundException("User '" + username + "' not found");
 };
}

Listing 5.4 Defining a custom user details service bean

122 CHAPTER 5 Securing Spring
The userDetailsService() method is given a UserRepository as a parameter. To
create the bean, it returns a lambda that takes a username parameter and uses it to call
findByUsername() on the given UserRepository.

 The loadByUsername() method has one simple rule: it must never return null.
Therefore, if the call to findByUsername() returns null, the lambda will throw a
UsernameNotFoundException (which is defined by Spring Security). Otherwise, the
User that was found will be returned.

 Now that you have a custom user details service that reads user information via a JPA
repository, you just need a way to get users into the database in the first place. You need
to create a registration page for Taco Cloud patrons to register with the application.

REGISTERING USERS

Although Spring Security handles many aspects of security, it really isn’t directly
involved in the process of user registration, so you’re going to rely on a little bit of
Spring MVC to handle that task. The RegistrationController class in the following
listing presents and processes registration forms.

package tacos.security;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import tacos.data.UserRepository;

@Controller
@RequestMapping("/register")
public class RegistrationController {

 private UserRepository userRepo;
 private PasswordEncoder passwordEncoder;

 public RegistrationController(
 UserRepository userRepo, PasswordEncoder passwordEncoder) {
 this.userRepo = userRepo;
 this.passwordEncoder = passwordEncoder;
 }

 @GetMapping
 public String registerForm() {
 return "registration";
 }

 @PostMapping
 public String processRegistration(RegistrationForm form) {
 userRepo.save(form.toUser(passwordEncoder));
 return "redirect:/login";
 }

}

Listing 5.5 A user registration controller

123Configuring authentication
Like any typical Spring MVC controller, RegistrationController is annotated with
@Controller to designate it as a controller and to mark it for component scanning.
It’s also annotated with @RequestMapping such that it will handle requests whose path
is /register.

 More specifically, a GET request for /register will be handled by the register-
Form() method, which simply returns a logical view name of registration. The fol-
lowing listing shows a Thymeleaf template that defines the registration view.

<!DOCTYPE html>
<html xmlns="http:/ /www.w3.org/1999/xhtml"
 xmlns:th="http:/ /www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Register</h1>

 <form method="POST" th:action="@{/register}" id="registerForm">

 <label for="username">Username: </label>
 <input type="text" name="username"/>

 <label for="password">Password: </label>
 <input type="password" name="password"/>

 <label for="confirm">Confirm password: </label>
 <input type="password" name="confirm"/>

 <label for="fullname">Full name: </label>
 <input type="text" name="fullname"/>

 <label for="street">Street: </label>
 <input type="text" name="street"/>

 <label for="city">City: </label>
 <input type="text" name="city"/>

 <label for="state">State: </label>
 <input type="text" name="state"/>

 <label for="zip">Zip: </label>
 <input type="text" name="zip"/>

 <label for="phone">Phone: </label>
 <input type="text" name="phone"/>

 <input type="submit" value="Register"/>
 </form>

Listing 5.6 A Thymeleaf registration form view

124 CHAPTER 5 Securing Spring
 </body>
</html>

When the form is submitted, the processRegistration() method handles the
HTTPS POST request. The form fields will be bound to a RegistrationForm object by
Spring MVC and passed into the processRegistration() method for processing.
RegistrationForm is defined in the following class:

package tacos.security;
import org.springframework.security.crypto.password.PasswordEncoder;
import lombok.Data;
import tacos.User;

@Data
public class RegistrationForm {

 private String username;
 private String password;
 private String fullname;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String phone;

 public User toUser(PasswordEncoder passwordEncoder) {
 return new User(
 username, passwordEncoder.encode(password),
 fullname, street, city, state, zip, phone);
 }

}

For the most part, RegistrationForm is just a basic Lombok class with a handful of
properties. But the toUser() method uses those properties to create a new User object,
which is what processRegistration() will save, using the injected UserRepository.

 You’ve no doubt noticed that RegistrationController is injected with a Password-
Encoder. This is the exact same PasswordEncoder bean you declared earlier. When
processing a form submission, RegistrationController passes it to the toUser()
method, which uses it to encode the password before saving it to the database. In this
way, the submitted password is written in an encoded form, and the user details ser-
vice will be able to authenticate against that encoded password.

 Now the Taco Cloud application has complete user registration and authentication
support. But if you start it up at this point, you’ll notice that you can’t even get to the
registration page without being prompted to log in. That’s because, by default, all
requests require authentication. Let’s look at how web requests are intercepted and
secured so you can fix this strange chicken-and-egg situation.

125Securing web requests
5.3 Securing web requests
The security requirements for Taco Cloud should require that a user be authenticated
before designing tacos or placing orders. But the home page, login page, and registra-
tion page should be available to unauthenticated users.

 To configure these security rules, we’ll need to declare a SecurityFilterChain
bean. The following @Bean method shows a minimal (but not useful) SecurityFilter-
Chain bean declaration:

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http.build();
}

The filterChain() method accepts an HttpSecurity object, which acts as a builder
that can be used to configure how security is handled at the web level. Once security
configuration is set up via the HttpSecurity object, a call to build() will create a
SecurityFilterChain that is returned from the bean method.

 The following are among the many things you can configure with HttpSecurity:

 Requiring that certain security conditions be met before allowing a request to
be served

 Configuring a custom login page
 Enabling users to log out of the application
 Configuring cross-site request forgery protection

Intercepting requests to ensure that the user has proper authority is one of the most
common things you’ll configure HttpSecurity to do. Let’s ensure that your Taco
Cloud customers meet those requirements.

5.3.1 Securing requests

You need to ensure that requests for /design and /orders are available only to authen-
ticated users; all other requests should be permitted for all users. The following con-
figuration does exactly that:

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeRequests()
 .antMatchers("/design", "/orders").hasRole("USER")
 .antMatchers("/", "/**").permitAll()

 .and()
 .build();
}

The call to authorizeRequests() returns an object (ExpressionUrlAuthorization-
Configurer.ExpressionInterceptUrlRegistry) on which you can specify URL paths

126 CHAPTER 5 Securing Spring
and patterns and the security requirements for those paths. In this case, you specify
the following two security rules:

 Requests for /design and /orders should be for users with a granted authority
of ROLE_USER. Don’t include the ROLE_ prefix on roles passed to hasRole(); it
will be assumed by hasRole().

 All requests should be permitted to all users.

The order of these rules is important. Security rules declared first take precedence
over those declared lower down. If you were to swap the order of those two security
rules, all requests would have permitAll() applied to them; the rule for /design and
/orders requests would have no effect.

 The hasRole() and permitAll() methods are just a couple of the methods for
declaring security requirements for request paths. Table 5.1 describes all the available
methods.

Most of the methods in table 5.1 provide essential security rules for request handling,
but they’re self-limiting, enabling security rules only as defined by those methods.
Alternatively, you can use the access() method to provide a SpEL expression to
declare richer security rules. Spring Security extends SpEL to include several security-
specific values and functions, as listed in table 5.2.

Table 5.1 Configuration methods to define how a path is to be secured

Method What it does

access(String) Allows access if the given Spring Expression Language (SpEL)
expression evaluates to true

anonymous() Allows access to anonymous users

authenticated() Allows access to authenticated users

denyAll() Denies access unconditionally

fullyAuthenticated() Allows access if the user is fully authenticated (not remembered)

hasAnyAuthority(String…) Allows access if the user has any of the given authorities

hasAnyRole(String…) Allows access if the user has any of the given roles

hasAuthority(String) Allows access if the user has the given authority

hasIpAddress(String) Allows access if the request comes from the given IP address

hasRole(String) Allows access if the user has the given role

not() Negates the effect of any of the other access methods

permitAll() Allows access unconditionally

rememberMe() Allows access for users who are authenticated via remember-me

127Securing web requests
As you can see, most of the security expression extensions in table 5.2 correspond to
similar methods in table 5.1. In fact, using the access() method along with the has-
Role() and permitAll expressions, you can rewrite the SecurityFilterChain config-
uration as follows.

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeRequests()
 .antMatchers("/design", "/orders").access("hasRole('USER')")
 .antMatchers("/", "/**").access("permitAll()")

 .and()
 .build();
}

Table 5.2 Spring Security extensions to the Spring Expression Language

Security expression What it evaluates to

authentication The user’s authentication object

denyAll Always evaluates to false

hasAnyAuthority(String…
authorities)

true if the user has been granted any of the given authorities

hasAnyRole(String… roles) true if the user has any of the given roles

hasAuthority(String
authority)

true if the user has been granted the specified authority

hasPermission(Object target,
Object permission)

true if the user has access to the specified target object for
the given permission

hasPermission(Serializable
targetId, String targetType,
Object permission)

true if the user has access to the object specified by
targetId and the specified targetType for the given
permission

hasRole(String role) true if the user has the given role

hasIpAddress(String
ipAddress)

true if the request comes from the given IP address

isAnonymous() true if the user is anonymous

isAuthenticated() true if the user is authenticated

isFullyAuthenticated() true if the user is fully authenticated (not authenticated with
remember-me)

isRememberMe() true if the user is authenticated via remember-me

permitAll Always evaluates to true

principal The user’s principal object

Listing 5.7 Using Spring expressions to define authorization rules

128 CHAPTER 5 Securing Spring
This may not seem like a big deal at first. After all, these expressions only mirror what
you already did with method calls. But expressions can be much more flexible. For
instance, suppose that (for some crazy reason) you wanted to allow only users with
ROLE_USER authority to create new tacos on Tuesdays (for example, on Taco Tuesday);
you could rewrite the expression as shown in this modified version of the Security-
FilterChain bean method:

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeRequests()
 .antMatchers("/design", "/orders")
 .access("hasRole('USER') && " +
 "T(java.util.Calendar).getInstance().get("+
 "T(java.util.Calendar).DAY_OF_WEEK) == " +
 "T(java.util.Calendar).TUESDAY")
 .antMatchers("/", "/**").access("permitAll")

 .and()
 .build();
}

With SpEL security constraints, the possibilities are virtually endless. I’ll bet that
you’re already dreaming up interesting security constraints based on SpEL.

 The authorization needs for the Taco Cloud application are met by the simple use
of access() and the SpEL expressions. Now let’s see about customizing the login
page to fit the look of the Taco Cloud application.

5.3.2 Creating a custom login page

The default login page is much better than the clunky HTTP basic dialog box you
started with, but it’s still rather plain and doesn’t quite fit with the look of the rest of
the Taco Cloud application.

 To replace the built-in login page, you first need to tell Spring Security what path
your custom login page will be at. That can be done by calling formLogin() on the
HttpSecurity object, as shown next:

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeRequests()
 .antMatchers("/design", "/orders").access("hasRole('USER')")
 .antMatchers("/", "/**").access("permitAll()")

 .and()
 .formLogin()
 .loginPage("/login")

 .and()
 .build();
}

129Securing web requests
Notice that before you call formLogin(), you bridge this section of configuration
and the previous section with a call to and(). The and() method signifies that you’re
finished with the authorization configuration and are ready to apply some addi-
tional HTTP configuration. You’ll use and() several times as you begin new sections
of configuration.

 After the bridge, you call formLogin() to start configuring your custom login
form. The call to loginPage() after that designates the path where your custom login
page will be provided. When Spring Security determines that the user is unauthenti-
cated and needs to log in, it will redirect them to this path.

 Now you need to provide a controller that handles requests at that path. Because
your login page will be fairly simple—nothing but a view—it’s easy enough to declare
it as a view controller in WebConfig. The following addViewControllers() method
sets up the login page view controller alongside the view controller that maps “/” to
the home controller:

@Override
public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 registry.addViewController("/login");
}

Finally, you need to define the login page view itself. Because you’re using Thymeleaf
as your template engine, the following Thymeleaf template should do fine:

<!DOCTYPE html>
<html xmlns="http:/ /www.w3.org/1999/xhtml"
 xmlns:th="http:/ /www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Login</h1>

 <div th:if="${error}">
 Unable to login. Check your username and password.
 </div>

 <p>New here? Click
 <a th:href="@{/register}">here to register.</p>

 <form method="POST" th:action="@{/login}" id="loginForm">
 <label for="username">Username: </label>
 <input type="text" name="username" id="username" />

 <label for="password">Password: </label>
 <input type="password" name="password" id="password" />

 <input type="submit" value="Login"/>
 </form>

130 CHAPTER 5 Securing Spring
 </body>
</html>

The key things to note about this login page are the path it posts to and the names of
the username and password fields. By default, Spring Security listens for login requests
at /login and expects that the username and password fields be named username and
password. This is configurable, however. For example, the following configuration
customizes the path and field names:

.and()
 .formLogin()
 .loginPage("/login")
 .loginProcessingUrl("/authenticate")
 .usernameParameter("user")
 .passwordParameter("pwd")

Here, you specify that Spring Security should listen for requests to /authenticate to
handle login submissions. Also, the username and password fields should now be
named user and pwd.

 By default, a successful login will take the user directly to the page that they were
navigating to when Spring Security determined that they needed to log in. If the user
were to directly navigate to the login page, a successful login would take them to the
root path (for example, the home page). But you can change that by specifying a
default success page, as shown next:

.and()
 .formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/design")

As configured here, if the user were to successfully log in after directly going to the
login page, they would be directed to the /design page.

 Optionally, you can force the user to the design page after login, even if they were
navigating elsewhere prior to logging in, by passing true as a second parameter to
defaultSuccessUrl as follows:

.and()
 .formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/design", true)

Signing in with a username and password is the most common way to authenticate in
a web application. But let’s have a look at another way to authenticate a user that uses
someone else’s login page.

131Securing web requests
5.3.3 Enabling third-party authentication

You may have seen links or buttons on your favorite website that say “Sign in with Face-
book,” “Log in with Twitter,” or something similar. Rather than asking a user to enter
their credentials on a login page specific to the website, they offer a way to sign in via
another website like Facebook that they may already be logged into.

 This type of authentication is based on OAuth2 or OpenID Connect (OIDC).
Although OAuth2 is an authorization specification, and we’ll talk more about how to
use it to secure REST APIs in chapter 8, it can be also used to perform authentication
via a third-party website. OpenID Connect is another security specification that is
based on OAuth2 to formalize the interaction that takes place during a third-party
authentication.

 To employ this type of authentication in your Spring application, you’ll need to
add the OAuth2 client starter to the build as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-client</artifactId>
</dependency>

Then, at the very least, you’ll need to configure details about one or more OAuth2 or
OpenID Connect servers that you want to be able to authenticate against. Spring
Security supports sign-in with Facebook, Google, GitHub, and Okta out of the box,
but you can configure other clients by specifying a few extra properties.

 The general set of properties you’ll need to set for your application to act as an
OAuth2/OpenID Connect client follows:

spring:
 security:
 oauth2:
 client:
 registration:
 <oauth2 or openid provider name>:
 clientId: <client id>
 clientSecret: <client secret>
 scope: <comma-separated list of requested scopes>

For example, suppose that for Taco Cloud, we want users to be able to sign in using Face-
book. The following configuration in application.yml will set up the OAuth2 client:

spring:
 security:
 oauth2:
 client:
 registration:
 facebook:
 clientId: <facebook client id>
 clientSecret: <facebook client secret>
 scope: email, public_profile

132 CHAPTER 5 Securing Spring
The client ID and secret are the credentials that identify your application to Face-
book. You can obtain a client ID and secret by creating a new application entry at
https://developers.facebook.com/. The scope property specifies the access that the
application will be granted. In this case, the application will have access to the user’s
email address and the essential information from their public Facebook profile.

 In a very simple application, this is all you will need. When the user attempts to
access a page that requires authentication, their browser will redirect to Facebook. If
they’re not already logged in to Facebook, they’ll be greeted with the Facebook sign-
in page. After signing in to Facebook, they’ll be asked to authorize your application
and grant the requested scope. Finally, they’ll be redirected back to your application,
where they will have been authenticated.

 If, however, you’ve customized security by declaring a SecurityFilterChain bean,
then you’ll need to enable OAuth2 login along with the rest of the security configura-
tion as follows:

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeRequests()
 .mvcMatchers("/design", "/orders").hasRole("USER")
 .anyRequest().permitAll()

 .and()
 .formLogin()
 .loginPage("/login")

 .and()
 .oauth2Login()

 ...

 .and()
 .build();
}

You may also want to offer both a traditional username-password login and third-party
login. In that case, you can specify the login page in the configuration like this:

.and()
 .oauth2Login()
 .loginPage("/login")

This will cause the application to always take the user to the application-provided
login page where they may choose to log in with their username and password as
usual. But you can also provide a link on that same login page that offers them the
opportunity to log in with Facebook. Such a link could look like this in the login
page’s HTML template:

<a th:href="/oauth2/authorization/facebook">Sign in with Facebook

https://developers.facebook.com/

133Securing web requests
Now that you’ve dealt with logging in, let’s flip to the other side of the authentication
coin and see how you can enable a user to log out. Just as important as logging in to
an application is logging out. To enable logout, you simply need to call logout on the
HttpSecurity object as follows:

.and()
 .logout()

This sets up a security filter that intercepts POST requests to /logout. Therefore, to
provide logout capability, you just need to add a logout form and button to the views
in your application, as shown next:

<form method="POST" th:action="@{/logout}">
 <input type="submit" value="Logout"/>
</form>

When the user clicks the button, their session will be cleared, and they will be logged
out of the application. By default, they’ll be redirected to the login page where they
can log in again. But if you’d rather they be sent to a different page, you can call
logoutSuccessUrl() to specify a different post-logout landing page, as shown here:

.and()
 .logout()
 .logoutSuccessUrl("/")

In this case, users will be sent to the home page following logout.

5.3.4 Preventing cross-site request forgery

Cross-site request forgery (CSRF) is a common security attack. It involves subjecting a
user to code on a maliciously designed web page that automatically (and usually
secretly) submits a form to another application on behalf of a user who is often the
victim of the attack. For example, a user may be presented with a form on an
attacker’s website that automatically posts to a URL on the user’s banking website
(which is presumably poorly designed and vulnerable to such an attack) to transfer
money. The user may not even know that the attack happened until they notice
money missing from their account.

 To protect against such attacks, applications can generate a CSRF token upon dis-
playing a form, place that token in a hidden field, and then stow it for later use on the
server. When the form is submitted, the token is sent back to the server along with the
rest of the form data. The request is then intercepted by the server and compared
with the token that was originally generated. If the token matches, the request is
allowed to proceed. Otherwise, the form must have been rendered by an evil website
without knowledge of the token generated by the server.

 Fortunately, Spring Security has built-in CSRF protection. Even more fortunate is
that it’s enabled by default and you don’t need to explicitly configure it. You only

134 CHAPTER 5 Securing Spring
need to make sure that any forms your application submits include a field named
_csrf that contains the CSRF token.

 Spring Security even makes that easy by placing the CSRF token in a request attri-
bute with the name _csrf. Therefore, you could render the CSRF token in a hidden
field with the following in a Thymeleaf template:

<input type="hidden" name="_csrf" th:value="${_csrf.token}"/>

If you’re using Spring MVC’s JSP tag library or Thymeleaf with the Spring Security dia-
lect, you needn’t even bother explicitly including a hidden field. The hidden field will
be rendered automatically for you.

 In Thymeleaf, you just need to make sure that one of the attributes of the <form>
element is prefixed as a Thymeleaf attribute. That’s usually not a concern, because it’s
quite common to let Thymeleaf render the path as context relative. For example, the
th:action attribute shown next is all you need for Thymeleaf to render the hidden
field for you:

<form method="POST" th:action="@{/login}" id="loginForm">

It’s possible to disable CSRF support, but I’m hesitant to show you how. CSRF protec-
tion is important and easily handled in forms, so there’s little reason to disable it. But
if you insist on disabling it, you can do so by calling disable() like this:

.and()
 .csrf()
 .disable()

Again, I caution you not to disable CSRF protection, especially for production
applications.

 All of your web layer security is now configured for Taco Cloud. Among other
things, you now have a custom login page and the ability to authenticate users against
a JPA user repository. Now let’s see how you can obtain information about the logged-
in user.

5.4 Applying method-level security
Although it’s easy to think about security at the web-request level, that’s not always
where security constraints are best applied. Sometimes it’s better to verify that the user
is authenticated and has been granted adequate authority at the point where the
secured action will be performed.

 For example, let’s say that for administrative purposes, we have a service class that
includes a method for clearing out all orders from the database. Using an injected
OrderRepository, that method might look something like this:

public void deleteAllOrders() {
 orderRepository.deleteAll();
}

135Applying method-level security
Now, suppose we have a controller that calls the deleteAllOrders() method as the
result of a POST request, as shown here:

@Controller
@RequestMapping("/admin")
public class AdminController {

 private OrderAdminService adminService;

 public AdminController(OrderAdminService adminService) {
 this.adminService = adminService;
 }

 @PostMapping("/deleteOrders")
 public String deleteAllOrders() {
 adminService.deleteAllOrders();
 return "redirect:/admin";
 }

}

It’d be easy enough to tweak SecurityConfig as follows to ensure that only autho-
rized users are allowed to perform that POST request:

.authorizeRequests()
 ...
 .antMatchers(HttpMethod.POST, "/admin/**")
 .access("hasRole('ADMIN')")

That’s great and would prevent any unauthorized user from making a POST request to
/admin/deleteOrders that would result in all orders disappearing from the database.

 But suppose that some other controller method also calls deleteAllOrders().
You’d need to add more matchers to secure the requests for the other controllers that
will need to be secured.

 Instead, we can apply security directly on the deleteAllOrders() method like this:

@PreAuthorize("hasRole('ADMIN')")
public void deleteAllOrders() {
 orderRepository.deleteAll();
}

The @PreAuthorize annotation takes a SpEL expression, and, if the expression evalu-
ates to false, the method will not be invoked. On the other hand, if the expression
evaluates to true, then the method will be allowed. In this case, @PreAuthorize is
checking that the user has the ROLE_ADMIN privilege. If so, then the method will be
called and all orders will be deleted. Otherwise, it will be stopped in its tracks.

 In the event that @PreAuthorize blocks the call, then Spring Security’s Access-
DeniedException will be thrown. This is an unchecked exception, so you don’t need

136 CHAPTER 5 Securing Spring
to catch it, unless you want to apply some custom behavior around the exception han-
dling. If left uncaught, it will bubble up and eventually be caught by Spring Security’s
filters and handled accordingly, either with an HTTP 403 page or perhaps by redirect-
ing to the login page if the user is unauthenticated.

 For @PreAuthorize to work, you’ll need to enable global method security. For that,
you’ll need to annotate the security configuration class with @EnableGlobalMethod-
Security as follows:

@Configuration
@EnableGlobalMethodSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 ...
}

You’ll find @PreAuthorize to be a useful annotation for most method-level security
needs. But know that it has a slightly less useful after-invocation counterpart in
@PostAuthorize. The @PostAuthorize annotation works almost the same as the
@PreAuthorize annotation, except that its expression won’t be evaluated until after
the target method is invoked and returns. This allows the expression to consider the
return value of the method in deciding whether to permit the method invocation.

 For example, suppose we have a method that fetches an order by its ID. If you want
to restrict it from being used except by admins or by the user who the order belongs
to, you can use @PostAuthorize like this:

@PostAuthorize("hasRole('ADMIN') || " +
 "returnObject.user.username == authentication.name")
public TacoOrder getOrder(long id) {
 ...
}

In this case, the returnObject in the TacoOrder returned from the method. If its user
property has a username that is equal to the authentication’s name property, then it will
be allowed. To know that, though, the method will need to be executed so that it can
return the TacoOrder object for consideration.

 But wait! How can you secure a method from being invoked if the condition for
applying security relies on the return value from the method invocation? That chicken-
and-egg riddle is solved by allowing the method to be invoked, then throwing an
AccessDeniedException if the expression returns false.

5.5 Knowing your user
Often, it’s not enough to simply know that the user has logged in and what permis-
sions they have been granted. It’s usually important to also know who they are, so that
you can tailor their experience.

 For example, in OrderController, when you initially create the TacoOrder object
that’s bound to the order form, it’d be nice if you could prepopulate the TacoOrder

137Knowing your user
with the user’s name and address, so they don’t have to reenter it for each order. Per-
haps even more important, when you save their order, you should associate the Taco-
Order entity with the User that created the order.

 To achieve the desired connection between an TacoOrder entity and a User entity,
you need to add the following new property to the TacoOrder class:

@Data
@Entity
@Table(name="Taco_Order")
public class TacoOrder implements Serializable {

 ...

 @ManyToOne
 private User user;

 ...

}

The @ManyToOne annotation on this property indicates that an order belongs to a sin-
gle user and, conversely, that a user may have many orders. (Because you’re using
Lombok, you won’t need to explicitly define accessor methods for the property.)

 In OrderController, the processOrder() method is responsible for saving an
order. It will need to be modified to determine who the authenticated user is and to
call setUser() on the TacoOrder object to connect the order with the user.

 We have several ways to determine who the user is. A few of the most common
ways follow:

 Inject a java.security.Principal object into the controller method.
 Inject an org.springframework.security.core.Authentication object into

the controller method.
 Use org.springframework.security.core.context.SecurityContextHolder

to get at the security context.
 Inject an @AuthenticationPrincipal annotated method parameter.

(@AuthenticationPrincipal is from Spring Security’s org.springframework
.security.core.annotation package.)

For example, you could modify processOrder() to accept a java.security.Principal
as a parameter. You could then use the principal name to look up the user from a
UserRepository as follows:

@PostMapping
public String processOrder(@Valid TacoOrder order, Errors errors,
 SessionStatus sessionStatus,
 Principal principal) {

 ...

138 CHAPTER 5 Securing Spring
 User user = userRepository.findByUsername(
 principal.getName());

 order.setUser(user);

 ...

}

This works fine, but it litters code that’s otherwise unrelated to security with security
code. You can trim down some of the security-specific code by modifying process-
Order() to accept an Authentication object as a parameter instead of a Principal,
as shown next:

@PostMapping
public String processOrder(@Valid TacoOrder order, Errors errors,
 SessionStatus sessionStatus,
 Authentication authentication) {

 ...

 User user = (User) authentication.getPrincipal();
 order.setUser(user);

 ...

}

With the Authentication in hand, you can call getPrincipal() to get the principal
object which, in this case, is a User. Note that getPrincipal() returns a java.util
.Object, so you need to cast it to User.

 Perhaps the cleanest solution of all, however, is to simply accept a User object in
processOrder() but annotate it with @AuthenticationPrincipal so that it will be the
authentication’s principal, as follows:

@PostMapping
public String processOrder(@Valid TacoOrder order, Errors errors,
 SessionStatus sessionStatus,
 @AuthenticationPrincipal User user) {

 if (errors.hasErrors()) {
 return "orderForm";
 }

 order.setUser(user);

 orderRepo.save(order);
 sessionStatus.setComplete();

 return "redirect:/";
}

139Summary
What’s nice about @AuthenticationPrincipal is that it doesn’t require a cast (as with
Authentication), and it limits the security-specific code to the annotation itself. By
the time you get the User object in processOrder(), it’s ready to be used and assigned
to the TacoOrder.

 There’s one other way of identifying who the authenticated user is, although it’s
a bit messy in the sense that it’s very heavy with security-specific code. You can obtain
an Authentication object from the security context and then request its principal
like this:

Authentication authentication =
 SecurityContextHolder.getContext().getAuthentication();
User user = (User) authentication.getPrincipal();

Although this snippet is thick with security-specific code, it has one advantage over the
other approaches described: it can be used anywhere in the application, not just in a
controller’s handler methods. This makes it suitable for use in lower levels of the
code.

Summary
 Spring Security autoconfiguration is a great way to get started with security, but

most applications will need to explicitly configure security to meet their unique
security requirements.

 User details can be managed in user stores backed by relational databases,
LDAP, or completely custom implementations.

 Spring Security automatically protects against CSRF attacks.
 Information about the authenticated user can be obtained via the Security-

Context object (returned from SecurityContextHolder.getContext()) or
injected into controllers using @AuthenticationPrincipal.

Working with
configuration properties
Do you remember when the iPhone first came out? A small slab of metal and glass
hardly fit the description of what the world had come to recognize as a phone. And
yet, it pioneered the modern smartphone era, changing everything about how we
communicate. Although touch phones are in many ways easier and more powerful
than their predecessor, the flip phone, when the iPhone was first announced, it was
hard to imagine how a device with a single button could be used to place calls.

 In some ways, Spring Boot autoconfiguration is like this. Autoconfiguration
greatly simplifies Spring application development. But after a decade of setting
property values in Spring XML configuration and calling setter methods on bean
instances, it’s not immediately apparent how to set properties on beans for which
there’s no explicit configuration.

 Fortunately, Spring Boot provides a way to set property values on application
components with configuration properties. Configuration properties are nothing
more than properties on @ConfigurationProperties-annotated beans in the Spring

This chapter covers
 Fine-tuning autoconfigured beans

 Applying configuration properties to application
components

 Working with Spring profiles
140

141Fine-tuning autoconfiguration
application context. Spring will inject values from one of several property sources—
including JVM system properties, command-line arguments, and environment vari-
ables—into the bean properties. We’ll see how to use @ConfigurationProperties on
our own beans in section 6.2. But Spring Boot itself provides several @Configuration-
Properties-annotated beans that we’ll configure first.

 In this chapter, you’re going to take a step back from implementing new features
in the Taco Cloud application to explore configuration properties. What you take
away will no doubt prove useful as you move forward in the chapters that follow. We’ll
start by seeing how to employ configuration properties to fine-tune what Spring Boot
automatically configures.

6.1 Fine-tuning autoconfiguration
Before we dive in too deeply with configuration properties, it’s important to establish
the following different (but related) kinds of configurations in Spring:

 Bean wiring—Configuration that declares application components to be created
as beans in the Spring application context and how they should be injected into
each other

 Property injection—Configuration that sets values on beans in the Spring applica-
tion context

In Spring’s XML and Java configuration, these two types of configurations are often
declared explicitly in the same place. In Java configuration, a @Bean-annotated
method is likely to both instantiate a bean and then set values to its properties. For
example, consider the following @Bean method that declares a DataSource for an
embedded H2 database:

@Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(H2)
 .addScript("taco_schema.sql")
 .addScripts("user_data.sql", "ingredient_data.sql")
 .build();
}

Here the addScript() and addScripts() methods set some String properties with
the name of SQL scripts that should be applied to the database once the data source is
ready. Whereas this is how you might configure a DataSource bean if you aren’t using
Spring Boot, autoconfiguration makes this method completely unnecessary.

 If the H2 dependency is available in the runtime classpath, then Spring Boot auto-
matically creates in the Spring application context an appropriate DataSource bean,
which applies the SQL scripts schema.sql and data.sql.

 But what if you want to name the SQL scripts something else? Or what if you need
to specify more than two SQL scripts? That’s where configuration properties come in.

142 CHAPTER 6 Working with configuration properties
But before you can start using configuration properties, you need to understand
where those properties come from.

6.1.1 Understanding Spring’s environment abstraction

The Spring environment abstraction is a one-stop shop for any configurable property.
It abstracts the origins of properties so that beans needing those properties can con-
sume them from Spring itself. The Spring environment pulls from several property
sources, including the following:

 JVM system properties
 Operating system environment variables
 Command-line arguments
 Application property configuration files

It then aggregates those properties into a single source from which Spring beans can
be injected. Figure 6.1 illustrates how properties from property sources flow through
the Spring environment abstraction to Spring beans.

The beans that are automatically configured by Spring Boot are all configurable by
properties drawn from the Spring environment. As a simple example, suppose that you
would like the application’s underlying servlet container to listen for requests on some
port other than the default port of 8080. To do that, specify a different port by setting
the server.port property in src/main/resources/application.properties like this:

server.port=9090

Property sources

JVM system

properties

Operating system

environment variables

Command-line

arguments

application.properties

application.yml

Data source

User service

Product

service

Inventory

tracker

Audit service

T
h

e
S

p
ri
n
g

e
n
v
ir
o
n
m

e
n
t

Beans in the Spring application context

Figure 6.1 The Spring environment pulls properties from property sources and makes them
available to beans in the application context.

143Fine-tuning autoconfiguration
Personally, I prefer using YAML when setting configuration properties. Therefore,
instead of using application.properties, I might set the server.port value in src/
main/resources/application.yml like this:

server:
 port: 9090

If you’d prefer to configure that property externally, you could also specify the port
when starting the application using a command-line argument as follows:

$ java -jar tacocloud-0.0.5-SNAPSHOT.jar --server.port=9090

If you want the application to always start on a specific port, you could set it one time
as an operating system environment variable, as shown next:

$ export SERVER_PORT=9090

Notice that when setting properties as environment variables, the naming style is
slightly different to accommodate restrictions placed on environment variable names
by the operating system. That’s OK. Spring is able to sort it out and interpret
SERVER_PORT as server.port with no problems.

 As I said, we have several ways of setting configuration properties. In fact, you
could use one of several hundred configuration properties to tweak and adjust how
Spring beans behave. You’ve already seen a few: server.port in this chapter, as well
as spring.datasource.name and spring.thymeleaf.cache in earlier chapters.

 It’s impossible to examine all of the available configuration properties in this chap-
ter. Even so, let’s take a look at a few of the most useful configuration properties you
might commonly encounter. We’ll start with a few properties that let you tweak the
autoconfigured data source.

6.1.2 Configuring a data source

At this point, the Taco Cloud application is still unfinished, but you’ll have several
more chapters to take care of that before you’re ready to deploy the application. As
such, the embedded H2 database you’re using as a data source is perfect for your
needs—for now. But once you take the application into production, you’ll probably
want to consider a more permanent database solution.

 Although you could explicitly configure your own DataSource bean, that’s usually
unnecessary. Instead, it’s simpler to configure the URL and credentials for your data-
base via configuration properties. For example, if you were to start using a MySQL
database, you might add the following configuration properties to application.yml:

spring:
 datasource:
 url: jdbc:mysql:/ /localhost/tacocloud
 username: tacouser
 password: tacopassword

144 CHAPTER 6 Working with configuration properties
Although you’ll need to add the appropriate JDBC driver to the build, you won’t
usually need to specify the JDBC driver class—Spring Boot can figure it out from
the structure of the database URL. But if there’s a problem, you can try setting the
spring.datasource.driver-class-name property like so:

spring:
 datasource:
 url: jdbc:mysql:/ /localhost/tacocloud
 username: tacouser
 password: tacopassword
 driver-class-name: com.mysql.jdbc.Driver

Spring Boot uses this connection data when autoconfiguring the DataSource bean.
The DataSource bean will be pooled using the HikariCP connection pool if it’s avail-
able on the classpath. If not, Spring Boot looks for and uses one of the following other
connection pool implementations on the classpath:

 Tomcat JDBC Connection Pool
 Apache Commons DBCP2

Although these are the only connection pool options available through autoconfigu-
ration, you’re always welcome to explicitly configure a DataSource bean to use what-
ever connection pool implementation you’d like.

 Earlier in this chapter, we suggested that there might be a way to specify the data-
base initialization scripts to run when the application starts. In that case, the spring
.datasource.schema and spring.datasource.data properties, shown here, prove
useful:

spring:
 datasource:
 schema:
 - order-schema.sql
 - ingredient-schema.sql
 - taco-schema.sql
 - user-schema.sql
 data:
 - ingredients.sql

Maybe explicit data source configuration isn’t your style. Instead, perhaps you’d pre-
fer to configure your data source in the Java Naming and Directory Interface (JNDI)
(http://mng.bz/MvEo) and have Spring look it up from there. In that case, set up
your data source by configuring spring.datasource.jndi-name as follows:

spring:
 datasource:
 jndi-name: java:/comp/env/jdbc/tacoCloudDS

If you set the spring.datasource.jndi-name property, the other data source connec-
tion properties (if set) are ignored.

http://mng.bz/MvEo

145Fine-tuning autoconfiguration
6.1.3 Configuring the embedded server

You’ve already seen how to set the servlet container’s port by setting server.port.
What I didn’t show you is what happens if server.port is set to 0, as shown here:

server:
 port: 0

Although you’re explicitly setting server.port to 0, the server won’t start on port 0.
Instead, it’ll start on a randomly chosen available port. This is useful when running
automated integration tests to ensure that any concurrently running tests don’t clash
on a hardcoded port number.

 But there’s more to the underlying server than just a port. One of the most com-
mon things you’ll need to do with the underlying container is to set it up to handle
HTTPS requests. To do that, the first thing you must do is create a keystore using the
JDK’s keytool command-line utility, as shown next:

$ keytool -keystore mykeys.jks -genkey -alias tomcat -keyalg RSA

You’ll be asked several questions about your name and organization, most of which
are irrelevant. But when asked for a password, remember what you choose. For the
sake of this example, I chose letmein as the password.

 Next, you’ll need to set a few properties to enable HTTPS in the embedded
server. You could specify them all on the command line, but that would be terribly
inconvenient. Instead, you’ll probably set them in the application.properties or
application.yml file. In application.yml, the properties might look like this:

server:
 port: 8443
 ssl:
 key-store: file:/ / /path/to/mykeys.jks
 key-store-password: letmein
 key-password: letmein

Here the) server.port property is set to 8443, a common choice for development
HTTPS servers. The server.ssl.key-store property should be set to the path where
the keystore file is created. Here it’s shown with a file:/ / URL to load it from the
filesystem, but if you package it within the application JAR file, you’ll use a class-
path: URL to reference it. And both the server.ssl.key-store-password and
server.ssl.key-password properties are set to the password that was given when cre-
ating the keystore.

 With these properties in place, your application should be listening for HTTPS
requests on port 8443. Depending on which browser you’re using, you may encounter
a warning about the server not being able to verify its identity. This is nothing to worry
about when serving from localhost during development.

146 CHAPTER 6 Working with configuration properties
6.1.4 Configuring logging

Most applications provide some form of logging. And even if your application doesn’t
log anything directly, the libraries that your application uses will certainly log their
activity.

 By default, Spring Boot configures logging via Logback (http://logback.qos.ch) to
write to the console at an INFO level. You’ve probably already seen plenty of INFO-level
entries in the application logs as you’ve run the application and other examples. But
as a reminder, here’s a logging sample showing the default log format (wrapped to fit
within the page margins):

2021-07-29 17:24:24.187 INFO 52240 --- [nio-8080-exec-1]
➥ com.example.demo.Hello Here's a log entry.
2021-07-29 17:24:24.187 INFO 52240 --- [nio-8080-exec-1]
➥ com.example.demo.Hello Here's another log entry.
2021-07-29 17:24:24.187 INFO 52240 --- [nio-8080-exec-1]
➥ com.example.demo.Hello And here's one more.

For full control over the logging configuration, you can create a logback.xml file at
the root of the classpath (in src/main/resources). Here’s an example of a simple log-
back.xml file you might use:

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
 </pattern>
 </encoder>
 </appender>
 <logger name="root" level="INFO"/>
 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

With this new configuration, the same sample log entries from earlier might look like
this (wrapped to fit in the page margins):

17:25:09.088 [http-nio-8080-exec-1] INFO com.example.demo.Hello -
 Here's a log entry.
17:25:09.088 [http-nio-8080-exec-1] INFO com.example.demo.Hello -
 Here's another log entry.
17:25:09.088 [http-nio-8080-exec-1] INFO com.example.demo.Hello -
 And here's one more.

Aside from the pattern used for logging, this Logback configuration is more or less
equivalent to the default you’ll get if you have no logback.xml file. But by editing log-
back.xml, you can gain full control over your application’s log files.

http://logback.qos.ch

147Fine-tuning autoconfiguration
NOTE The specifics of what can go into logback.xml are outside the scope of
this book. Refer to Logback’s documentation for more information.

The most common changes you’ll make to a logging configuration are to change the
logging levels and perhaps to specify a file where the logs should be written. With
Spring Boot configuration properties, you can make those changes without having to
create a logback.xml file.

 To set the logging levels, you create properties that are prefixed with logging
.level, followed by the name of the logger for which you want to set the logging level.
For instance, suppose you’d like to set the root logging level to WARN, but log Spring
Security logs at a DEBUG level. The following entries in application.yml will take care of
that for you:

logging:
 level:
 root: WARN
 org:
 springframework:
 security: DEBUG

Optionally, you can collapse the Spring Security package name to a single line for eas-
ier reading as follows:

logging:
 level:
 root: WARN
 org.springframework.security: DEBUG

Now suppose that you want to write the log entries to the file TacoCloud.log at
/var/logs/. The logging.file.path and logging.file.name properties can help
achieve that, as shown next:

logging:
 file:
 path: /var/logs/
 file: TacoCloud.log
 level:
 root: WARN
 org:
 springframework:
 security: DEBUG

Assuming that the application has write permissions to /var/logs/, the log entries will
be written to /var/logs/TacoCloud.log. By default, the log files rotate once they reach
10 MB in size.

148 CHAPTER 6 Working with configuration properties
6.1.5 Using special property values

When setting properties, you aren’t limited to declaring their values as hardcoded
String and numeric values. Instead, you can derive their values from other configura-
tion properties.

 For example, suppose (for whatever reason) you want to set a property named
greeting.welcome to echo the value of another property named spring.application
.name. To achieve this, you could use the ${} placeholder markers when setting
greeting.welcome as follows:

greeting:
 welcome: ${spring.application.name}

You can even embed that placeholder amid other text, as shown here:

greeting:
 welcome: You are using ${spring.application.name}.

As you’ve seen, configuring Spring’s own components with configuration properties
makes it easy to inject values into those components’ properties and to fine-tune auto-
configuration. Configuration properties aren’t exclusive to the beans that Spring cre-
ates. With a small amount of effort, you can take advantage of configuration
properties in your own beans. Let’s see how.

6.2 Creating your own configuration properties
As I mentioned earlier, configuration properties are nothing more than properties of
beans that have been designated to accept configurations from Spring’s environment
abstraction. What I didn’t mention is how those beans are designated to consume
those configurations.

 To support property injection of configuration properties, Spring Boot provides
the @ConfigurationProperties annotation. When placed on any Spring bean, it
specifies that the properties of that bean can be injected from properties in the Spring
environment.

 To demonstrate how @ConfigurationProperties works, suppose that you’ve
added the following method to OrderController to list the authenticated user’s past
orders:

@GetMapping
public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user));

 return "orderList";
}

149Creating your own configuration properties
Along with that, you’ve also added the next necessary findByUserOrderByPlacedAt-
Desc() method to OrderRepository:

List<Order> findByUserOrderByPlacedAtDesc(User user);

Notice that this repository method is named with a clause of OrderByPlacedAtDesc.
The OrderBy portion specifies a property by which the results will be ordered—in this
case, the placedAt property. The Desc at the end causes the ordering to be in
descending order. Therefore, the list of orders returned will be sorted from most
recent to least recent.

 As written, this controller method may be useful after the user has placed a hand-
ful of orders, but it could become a bit unwieldy for the most avid of taco connois-
seurs. A few orders displayed in the browser are useful; a never-ending list of hundreds
of orders is just noise. Let’s say that you want to limit the number of orders displayed
to the most recent 20 orders. You can change ordersForUser() as follows:

@GetMapping
public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, 20);
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));

 return "orderList";
}

along with the corresponding changes to OrderRepository, shown next:

List<TacoOrder> findByUserOrderByPlacedAtDesc(
 User user, Pageable pageable);

Here you’ve changed the signature of the findByUserOrderByPlacedAtDesc()
method to accept a Pageable as a parameter. Pageable is Spring Data’s way of select-
ing some subset of the results by a page number and page size. In the ordersFor-
User() controller method, you constructed a PageRequest object that implemented
Pageable to request the first page (page zero) with a page size of 20 to get up to 20 of
the most recently placed orders for the user.

 Although this works fantastically, it leaves me a bit uneasy that you’ve hardcoded
the page size. What if you later decide that 20 is too many orders to list, and you
decide to change it to 10? Because it’s hardcoded, you’d have to rebuild and redeploy
the application.

 Rather than hardcode the page size, you can set it with a custom configuration
property. First, you need to add a new property called pageSize to OrderController,
and then annotate OrderController with @ConfigurationProperties as shown in
the next listing.

150 CHAPTER 6 Working with configuration properties
@Controller
@RequestMapping("/orders")
@SessionAttributes("order")
@ConfigurationProperties(prefix="taco.orders")
public class OrderController {

 private int pageSize = 20;

 public void setPageSize(int pageSize) {
 this.pageSize = pageSize;
 }

 ...
 @GetMapping
 public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, pageSize);
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));
 return "orderList";
 }

}

The most significant change made in listing 6.1 is the addition of the @Configuration-
Properties annotation. Its prefix attribute is set to taco.orders, which means that
when setting the pageSize property, you need to use a configuration property named
taco.orders.pageSize.

 The new pageSize property defaults to 20, but you can easily change it to any value
you want by setting a taco.orders.pageSize property. For example, you could set this
property in application.yml like this:

taco:
 orders:
 pageSize: 10

Or, if you need to make a quick change while in production, you can do so without
having to rebuild and redeploy the application by setting the taco.orders.pageSize
property as an environment variable as follows:

$ export TACO_ORDERS_PAGESIZE=10

Any means by which a configuration property can be set can be used to adjust the
page size of the recent orders page. Next, we’ll look at how to set configuration data
in property holders.

Listing 6.1 Enabling configuration properties in OrderController

151Creating your own configuration properties
6.2.1 Defining configuration property holders

There’s nothing that says @ConfigurationProperties must be set on a controller or
any other specific kind of bean. @ConfigurationProperties are in fact often placed
on beans whose sole purpose in the application is to be holders of configuration data.
This keeps configuration-specific details out of the controllers and other application
classes. It also makes it easy to share common configuration properties among several
beans that may make use of that information.

 In the case of the pageSize property in OrderController, you could extract it to a
separate class. The following listing uses the OrderProps class in such a way.

package tacos.web;
import org.springframework.boot.context.properties.
 ConfigurationProperties;
import org.springframework.stereotype.Component;
import lombok.Data;

@Component
@ConfigurationProperties(prefix="taco.orders")
@Data
public class OrderProps {

 private int pageSize = 20;

}

As you did with OrderController, the pageSize property defaults to 20, and Order-
Props is annotated with @ConfigurationProperties to have a prefix of taco.orders.
It’s also annotated with @Component so that Spring component scanning will automati-
cally discover it and create it as a bean in the Spring application context. This is import-
ant, because the next step is to inject the OrderProps bean into OrderController.

 There’s nothing particularly special about configuration property holders. They’re
beans that have their properties injected from the Spring environment. They can be
injected into any other bean that needs those properties. For OrderController, this
means removing the pageSize property from OrderController and instead injecting
and using the OrderProps bean, as shown next:

private OrderProps props;

public OrderController(OrderRepository orderRepo,
 OrderProps props) {
 this.orderRepo = orderRepo;
 this.props = props;
}

 ...

Listing 6.2 Extracting pageSize to a holder class

152 CHAPTER 6 Working with configuration properties
@GetMapping
public String ordersForUser(
 @AuthenticationPrincipal User user, Model model) {

 Pageable pageable = PageRequest.of(0, props.getPageSize());
 model.addAttribute("orders",
 orderRepo.findByUserOrderByPlacedAtDesc(user, pageable));

 return "orderList";
}

Now OrderController is no longer responsible for handling its own configuration
properties. This keeps the code in OrderController slightly neater and allows you to
reuse the properties in OrderProps in any other bean that may need them. Moreover,
you’re collecting configuration properties that pertain to orders in one place: the
OrderProps class. If you need to add, remove, rename, or otherwise change the prop-
erties therein, you need to apply those changes only in OrderProps. And for testing
purposes, it’s easy to set configuration properties directly on a test-specific OrderProps
and give it to the controller prior to the test.

 For example, let’s pretend that you’re using the pageSize property in several other
beans when you decide it would be best to apply some validation to that property to
limit its values to no less than 5 and no more than 25. Without a holder bean, you’d
have to apply validation annotations to OrderController, the pageSize property, and
all other classes using that property. But because you’ve extracted pageSize into
OrderProps, you only must make the changes to OrderProps, as shown here:

package tacos.web;
import javax.validation.constraints.Max;
import javax.validation.constraints.Min;

import org.springframework.boot.context.properties.
 ConfigurationProperties;
import org.springframework.stereotype.Component;
import org.springframework.validation.annotation.Validated;

import lombok.Data;

@Component
@ConfigurationProperties(prefix="taco.orders")
@Data
@Validated
public class OrderProps {

 @Min(value=5, message="must be between 5 and 25")
 @Max(value=25, message="must be between 5 and 25")
 private int pageSize = 20;

}

Although you could as easily apply the @Validated, @Min, and @Max annotations to
OrderController (and any other beans that can be injected with OrderProps), it

153Creating your own configuration properties
would just clutter up OrderController that much more. With a configuration prop-
erty holder bean, you’ve collected configuration property specifics in one place, leav-
ing the classes that need those properties relatively clean.

6.2.2 Declaring configuration property metadata

Depending on your IDE, you may have noticed that the taco.orders.pageSize entry
in application.yml (or application.properties) has a warning saying something like
Unknown Property ‘taco’. This warning appears because there’s missing metadata
concerning the configuration property you just created. Figure 6.2 shows what this
looks like when I hover over the taco portion of the property in the Spring Tool Suite.

Configuration property metadata is completely optional and doesn’t prevent configu-
ration properties from working. But the metadata can be useful for providing some
minimal documentation around the configuration properties, especially in the IDE.
For example, when I hover over the spring.security.user.password property, I see
what’s shown in figure 6.3. Although the hover help you get is minimal, it can be
enough to help understand what the property is used for and how to use it.

To help those who might use the configuration properties that you define—which
might even be you—it’s generally a good idea to create some metadata around those
properties. At least it gets rid of those annoying yellow warnings in the IDE.

 To create metadata for your custom configuration properties, you’ll need to create
a file under the META-INF (e.g., in the project under src/main/resources/META-INF)
named additional-spring-configuration-metadata.json.

Figure 6.2 A warning for missing
configuration property metadata

Figure 6.3 Hover documentation
for configuration properties in the
Spring Tool Suite

154 CHAPTER 6 Working with configuration properties
QUICK-FIXING MISSING METADATA

If you’re using the Spring Tool Suite, there’s a quick-fix option for creating missing
property metadata. Place your cursor on the line with the missing metadata warning
and open the quick-fix pop-up with CMD-1 on Mac or Ctrl-1 on Windows and Linux
(see figure 6.4).

Then select the “Create Metadata for …” option to add some metadata for the prop-
erty. If it doesn’t already exist, this quick fix will create a file in META-INF/additional-
spring-configuration-metadata.json and fill it in with some metadata for the pageSize
property, as shown in the next code:

{"properties": [{
 "name": "taco.orders.page-size",
 "type": "java.lang.String",
 "description": "A description for 'taco.orders.page-size'"
}]}

Notice that the property name referenced in the metadata is taco.orders.page-size,
whereas the actual property name in application.yml is pageSize. Spring Boot’s flexi-
ble property naming allows for variations in property names such that taco.orders
.page-size is equivalent to taco.orders.pageSize, so it doesn’t matter much which
form you use.

 The initial metadata written to additional-spring-configuration-metadata.json is a
fine start, but you’ll probably want to edit it a little. Firstly, the pageSize property isn’t
a java.lang.String, so you’ll want to change it to java.lang.Integer. And the
description property should be changed to be more descriptive of what pageSize is
for. The following JSON code sample shows what the metadata might look like after
a few edits:

{"properties": [{
 "name": "taco.orders.page-size",
 "type": "java.lang.Integer",

Figure 6.4 Creating configuration property metadata with the quick-fix pop-up in Spring Tool Suite

155Configuring with profiles
 "description": "Sets the maximum number of orders to display in a list."
}]}

With that metadata in place, the warnings should be gone. What’s more, if you hover
over the taco.orders.pageSize property, you’ll see the description shown in figure 6.5.

Also, as shown in figure 6.6, you get autocompletion help from the IDE, just like
Spring-provided configuration properties.

As you’ve seen, configuration properties are useful for tweaking both autoconfig-
ured components as well as the details injected into your own application beans. But
what if you need to configure different properties for different deployment environ-
ments? Let’s take a look at how to use Spring profiles to set up environment-specific
configurations.

6.3 Configuring with profiles
When applications are deployed to different runtime environments, usually some con-
figuration details differ. The details of a database connection, for instance, are likely
not the same in a development environment as in a quality assurance environment,
and they are different still in a production environment. One way to configure prop-
erties uniquely in one environment over another is to use environment variables to
specify configuration properties instead of defining them in application.properties
and application.yml.

Figure 6.5 Hover help
for custom configuration
properties

Figure 6.6 Configuration property metadata enables autocompletion of properties.

156 CHAPTER 6 Working with configuration properties
 For instance, during development you can lean on the autoconfigured embedded
H2 database. But in production, you can set database configuration properties as envi-
ronment variables like this:

% export SPRING_DATASOURCE_URL=jdbc:mysql:/ /localhost/tacocloud
% export SPRING_DATASOURCE_USERNAME=tacouser
% export SPRING_DATASOURCE_PASSWORD=tacopassword

Although this will work, it’s somewhat cumbersome to specify more than one or two
configuration properties as environment variables. Moreover, there’s no good way
to track changes to environment variables or to easily roll back changes if there’s
a mistake.

 Instead, I prefer to take advantage of Spring profiles. Profiles are a type of condi-
tional configuration where different beans, configuration classes, and configuration
properties are applied or ignored based on what profiles are active at run time.

 For instance, let’s say that for development and debugging purposes, you want to
use the embedded H2 database, and you want the logging levels for the Taco Cloud
code to be set to DEBUG. But in production, you want to use an external MySQL data-
base and set the logging levels to WARN. In the development situation, it’s easy enough
to not set any data source properties and get the autoconfigured H2 database. And as
for debug-level logging, you can set the logging.level.tacos property for the tacos
base package to DEBUG in application.yml as follows:

logging:
 level:
 tacos: DEBUG

This is precisely what you need for development purposes. But if you were to deploy
this application in a production setting with no further changes to application.yml,
you’d still have debug logging for the tacos package and an embedded H2 database.
What you need is to define a profile with properties suited for production.

6.3.1 Defining profile-specific properties

One way to define profile-specific properties is to create yet another YAML or proper-
ties file containing only the properties for production. The name of the file should
follow this convention: application-{profile name}.yml or application-{profile name}
.properties. Then you can specify the configuration properties appropriate to that
profile. For example, you could create a new file named application-prod.yml that
contains the following properties:

spring:
 datasource:
 url: jdbc:mysql:/ /localhost/tacocloud
 username: tacouser
 password: tacopassword

157Configuring with profiles
logging:
 level:
 tacos: WARN

Another way to specify profile-specific properties works only with YAML configura-
tion. It involves placing profile-specific properties alongside nonprofiled properties in
application.yml, separated by three hyphens and the spring.profiles property to
name the profile. When applying the production properties to application.yml in this
way, the entire application.yml would look like this:

logging:
 level:
 tacos: DEBUG

spring:
 profiles: prod

 datasource:
 url: jdbc:mysql:/ /localhost/tacocloud
 username: tacouser
 password: tacopassword

logging:
 level:
 tacos: WARN

As you can see, this application.yml file is divided into two sections by a set of triple
hyphens (---). The second section specifies a value for spring.profiles, indicating
that the properties that follow apply to the prod profile. The first section, on the other
hand, doesn’t specify a value for spring.profiles. Therefore, its properties are com-
mon to all profiles or are defaults if the active profile doesn’t otherwise have the prop-
erties set.

 Regardless of which profiles are active when the application runs, the logging level
for the tacos package will be set to DEBUG by the property set in the default profile.
But if the profile named prod is active, then the logging.level.tacos property will
be overridden with WARN. Likewise, if the prod profile is active, then the data source
properties will be set to use the external MySQL database.

 You can define properties for as many profiles as you need by creating additional
YAML or properties files named with the pattern application-{profile name}.yml or
application-{profile name}.properties. Or, if you prefer, type three more dashes in
application.yml along with another spring.profiles property to specify the profile
name. Then add all of the profile-specific properties you need. Although there’s no
benefit to either approach, you might find that putting all profile configurations in a
single YAML file works best when the number of properties is small, whereas distinct
files for each profile is better when you have a large number of properties.

158 CHAPTER 6 Working with configuration properties
6.3.2 Activating profiles

Setting profile-specific properties will do no good unless those profiles are active. But
how can you make a profile active? All it takes to make a profile active is to include it
in the list of profile names given to the spring.profiles.active property. For exam-
ple, you could set it in application.yml like this:

spring:
 profiles:
 active:
 - prod

But that’s perhaps the worst possible way to set an active profile. If you set the active
profile in application.yml, then that profile becomes the default profile, and you
achieve none of the benefits of using profiles to separate the production-specific
properties from development properties. Instead, I recommend that you set the active
profile(s) with environment variables. On the production environment, you would set
SPRING_PROFILES_ACTIVE like this:

% export SPRING_PROFILES_ACTIVE=prod

From then on, any applications deployed to that machine will have the prod profile
active, and the corresponding configuration properties would take precedence over
the properties in the default profile.

 If you’re running the application as an executable JAR file, you might also set the
active profile with a command-line argument like this:

% java -jar taco-cloud.jar --spring.profiles.active=prod

Note that the spring.profiles.active property name contains the plural word pro-
files. This means you can specify more than one active profile. Often, this is with a
comma-separated list as when setting it with an environment variable, as shown here:

% export SPRING_PROFILES_ACTIVE=prod,audit,ha

But in YAML, you’d specify it as a list like this:

spring:
 profiles:
 active:
 - prod
 - audit
 - ha

It’s also worth noting that if you deploy a Spring application to Cloud Foundry, a pro-
file named cloud is automatically activated for you. If Cloud Foundry is your produc-
tion environment, you’ll want to be sure to specify production-specific properties
under the cloud profile.

159Configuring with profiles
 As it turns out, profiles aren’t useful only for conditionally setting configuration
properties in a Spring application. Let’s see how to declare beans specific to an
active profile.

6.3.3 Conditionally creating beans with profiles

Sometimes it’s useful to provide a unique set of beans for different profiles. Normally,
any bean declared in a Java configuration class is created, regardless of which profile is
active. But suppose you need some beans to be created only if a certain profile is
active. In that case, the @Profile annotation can designate beans as being applicable
to only a given profile.

 For instance, suppose you have a CommandLineRunner bean declared in Taco-
CloudApplication that’s used to load the embedded database with ingredient data
when the application starts. That’s great for development but would be unnecessary
(and undesirable) in a production application. To prevent the ingredient data from
being loaded every time the application starts in a production deployment, you could
annotate the CommandLineRunner bean method with @Profile like this:

@Bean
@Profile("dev")
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Or suppose that you need the CommandLineRunner created if either the dev profile or
qa profile is active. In that case, you can list the profiles for which the bean should be
created like so:

@Bean
@Profile({"dev", "qa"})
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Now the ingredient data will be loaded only if the dev or qa profiles are active. That
would mean that you’d need to activate the dev profile when running the application
in the development environment. It would be even more convenient if that Command-
LineRunner bean were always created unless the prod profile is active. In that case, you
can apply @Profile like this:

@Bean
@Profile("!prod")

160 CHAPTER 6 Working with configuration properties
public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

}

Here, the exclamation mark (!) negates the profile name. Effectively, it states that the
CommandLineRunner bean will be created if the prod profile isn’t active.

 It’s also possible to use @Profile on an entire @Configuration-annotated class.
For example, suppose that you were to extract the CommandLineRunner bean into a
separate configuration class named DevelopmentConfig. Then you could annotate
DevelopmentConfig with @Profile as follows:

@Profile({"!prod", "!qa"})
@Configuration
public class DevelopmentConfig {

 @Bean
 public CommandLineRunner dataLoader(IngredientRepository repo,
 UserRepository userRepo, PasswordEncoder encoder) {

 ...

 }

}

Here, the CommandLineRunner bean (as well as any other beans defined in Development-
Config) will be created only if neither the prod nor qa profile is active.

Summary
 We can annotate Spring beans with @ConfigurationProperties to enable

injection of values from one of several property sources.
 Configuration properties can be set in command-line arguments, environment

variables, JVM system properties, properties files, or YAML files, among other
options.

 Use configuration properties to override autoconfiguration settings, including
the ability to specify a data source URL and logging levels.

 Spring profiles can be used with property sources to conditionally set configura-
tion properties based on the active profile(s).

Part 2

Integrated Spring

The chapters in part 2 cover topics that help integrate your Spring applica-
tion with other applications.

 Chapter 7 expands on the discussion of Spring MVC started in chapter 2 by
looking at how to write REST APIs in Spring. We’ll look at how to define REST
endpoints in Spring MVC, automatically generate repository-based REST end-
points with Spring Data REST, and consume REST APIs. Chapter 8 looks at how
to secure an API using Spring Security’s support for OAuth 2 as well as how to
obtain authorization in client code that can access OAuth 2–secured APIs. In
chapter 9, we’ll look at using asynchronous communication to enable a Spring
application to both send and receive messages using the Java Message Service
(JMS), RabbitMQ, and Kafka. And finally, chapter 10 discusses declarative appli-
cation integration using the Spring Integration project. We’ll cover processing
data in real time, defining integration flows, and integrating with external sys-
tems like emails and filesystems.

Creating REST services
“The web browser is dead. What now?”
 Several years ago, I heard someone suggest that the web browser was nearing

legacy status and that something else would take over. But how could this be? What
could possibly dethrone the near-ubiquitous web browser? How would we consume
the growing number of sites and online services if not with a web browser? Surely
these were the ramblings of a madman!

 Fast-forward to the present day, and it’s clear that the web browser hasn’t gone
away. But it no longer reigns as the primary means of accessing the internet. Mobile
devices, tablets, smart watches, and voice-based devices are now commonplace. And
even many browser-based applications are actually running JavaScript applications
rather than letting the browser be a dumb terminal for server-rendered content.

 With such a vast selection of client-side options, many applications have adopted a
common design where the user interface is pushed closer to the client and the
server exposes an API through which all kinds of clients can interact with the back-
end functionality.

This chapter covers
 Defining REST endpoints in Spring MVC

 Automatic repository-based REST endpoints

 Consuming REST APIs
163

164 CHAPTER 7 Creating REST services
 In this chapter, you’re going to use Spring to provide a REST API for the Taco
Cloud application. You’ll use what you learned about Spring MVC in chapter 2 to cre-
ate RESTful endpoints with Spring MVC controllers. You’ll also automatically expose
REST endpoints for the Spring Data repositories you defined in chapters 3 and 4.
Finally, we’ll look at ways to test and secure those endpoints.

 But first, you’ll start by writing a few new Spring MVC controllers that expose back-
end functionality with REST endpoints to be consumed by a rich web frontend.

7.1 Writing RESTful controllers
In a nutshell, REST APIs aren’t much different from websites. Both involve respond-
ing to HTTP requests. But the key difference is that instead of responding to those
requests with HTML, as websites do, REST APIs typically respond with a data-oriented
format such as JSON or XML.

 In chapter 2 you used @GetMapping and @PostMapping annotations to fetch and
post data to the server. Those same annotations will still come in handy as you define
your REST API. In addition, Spring MVC supports a handful of other annotations for
various types of HTTP requests, as listed in table 7.1.

To see these annotations in action, you’ll start by creating a simple REST endpoint
that fetches a few of the most recently created tacos.

7.1.1 Retrieving data from the server

One thing that we’d like the Taco Cloud application to be able to do is allow taco fanat-
ics to design their own taco creations and share them with their follow taco lovers. One
way to do that is to display a list of the most recently created tacos on the website.

 In support of that feature, we need to create an endpoint that handles GET requests
for /api/tacos which include a “recent” parameter and responds with a list of recently

Table 7.1 Spring MVC’s HTTP request-handling annotations

Annotation HTTP method Typical usea

a. Mapping HTTP methods to create, read, update, and delete (CRUD) operations isn’t a perfect match, but in practice,
that’s how they’re often used and how you’ll use them in Taco Cloud.

@GetMapping HTTP GET requests Reading resource data

@PostMapping HTTP POST requests Creating a resource

@PutMapping HTTP PUT requests Updating a resource

@PatchMapping HTTP PATCH requests Updating a resource

@DeleteMapping HTTP DELETE requests Deleting a resource

@RequestMapping General-purpose request handling; HTTP method
specified in the method attribute

165Writing RESTful controllers
designed tacos. You’ll create a new controller to handle such a request. The next list-
ing shows the controller for the job.

package tacos.web.api;

import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Sort;
import org.springframework.web.bind.annotation.CrossOrigin;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import tacos.Taco;
import tacos.data.TacoRepository;

@RestController
@RequestMapping(path="/api/tacos",
 produces="application/json")
@CrossOrigin(origins="http://tacocloud:8080")
public class TacoController {
 private TacoRepository tacoRepo;

 public TacoController(TacoRepository tacoRepo) {
 this.tacoRepo = tacoRepo;
 }

 @GetMapping(params="recent")
 public Iterable<Taco> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 return tacoRepo.findAll(page).getContent();
 }
}

You may be thinking that this controller’s name sounds somewhat familiar. In chap-
ter 2 you created a similarly named DesignTacoController that handled similar types
of requests. But where that controller was for producing an HTML result in the Taco
Cloud application, this new TacoController is a REST controller, as indicated by the
@RestController annotation.

 The @RestController annotation serves two purposes. First, it’s a stereotype anno-
tation like @Controller and @Service that marks a class for discovery by component
scanning. But most relevant to the discussion of REST, the @RestController annota-
tion tells Spring that all handler methods in the controller should have their return
value written directly to the body of the response, rather than being carried in the
model to a view for rendering.

 Alternatively, you could have annotated TacoController with @Controller, just
like any Spring MVC controller. But then you’d need to also annotate all of the handler

Listing 7.1 A RESTful controller for taco design API requests

Handles requests
for /api/tacos

Allows cross-origin
requests

Fetches and returns
recent taco designs

166 CHAPTER 7 Creating REST services
methods with @ResponseBody to achieve the same result. Yet another option would be
to return a ResponseEntity object, which we’ll discuss in a moment.

 The @RequestMapping annotation at the class level works with the @GetMapping
annotation on the recentTacos() method to specify that the recentTacos() method
is responsible for handling GET requests for /design?recent.

 You’ll notice that the @RequestMapping annotation also sets a produces attribute.
This specifies that any of the handler methods in TacoController will handle
requests only if the client sends a request with an Accept header that includes
"application/json", indicating that the client can handle responses only in JSON
format. This use of produces limits your API to only producing JSON results, and it
allows for another controller (perhaps the TacoController from chapter 2) to handle
requests with the same paths, so long as those requests don’t require JSON output.

 Even though setting produces to "application/json" limits your API to being
JSON-based (which is fine for your needs), you’re welcome to set produces to an array
of String for multiple content types. For example, to allow for XML output, you
could add "text/xml" to the produces attribute as follows:

@RequestMapping(path="/api/tacos",
 produces={"application/json", "text/xml"})

The other thing you may have noticed in listing 7.1 is that the class is annotated with
@CrossOrigin. It’s common for a JavaScript-based user interface, such as those written
in a framework like Angular or ReactJS, to be served from a separate host and/or port
from the API (at least for now), and the web browser will prevent your client from
consuming the API. This restriction can be overcome by including CORS (cross-origin
resource sharing) headers in the server responses. Spring makes it easy to apply CORS
with the @CrossOrigin annotation.

 As applied here, @CrossOrigin allows clients from localhost, port 8080, to access
the API. The origins attribute accepts an array, however, so you can also specify mul-
tiple values, as shown next:

@RestController
@RequestMapping(path="/api/tacos",
 produces="application/json")
@CrossOrigin(origins={"http://tacocloud:8080", "http://tacocloud.com"})
public class TacoController {
 ...
}

The logic within the recentTacos() method is fairly straightforward. It constructs
a PageRequest object that specifies that you want only the first (0th) page of 12
results, sorted in descending order by the taco’s creation date. In short, you want a
dozen of the most recently created taco designs. The PageRequest is passed into
the call to the findAll() method of TacoRepository, and the content of that page

167Writing RESTful controllers
of results is returned to the client (which, as you saw in listing 7.1, will be used as
model data to display to the user).

 You now have the start of a Taco Cloud API for your client. For development test-
ing purposes, you may also want to use command-line utilities like curl or HTTPie
(https://httpie.org/) to poke about the API. For example, the following command
line shows how you might fetch recently created tacos with curl:

$ curl localhost:8080/api/tacos?recent

Or like this, if you prefer HTTPie:

$ http :8080/api/tacos?recent

Initially, the database will be empty, so the results from these requests will likewise be
empty. We’ll see in a moment how to handle POST requests that save tacos. But in the
meantime, you could add an CommandLineRunner bean to preload the database with
some test data. The following CommandLineRunner bean method shows how you might
preload a few ingredients and a few tacos:

@Bean
public CommandLineRunner dataLoader(
 IngredientRepository repo,
 UserRepository userRepo,
 PasswordEncoder encoder,
 TacoRepository tacoRepo) {
 return args -> {
 Ingredient flourTortilla = new Ingredient(
 "FLTO", "Flour Tortilla", Type.WRAP);
 Ingredient cornTortilla = new Ingredient(
 "COTO", "Corn Tortilla", Type.WRAP);
 Ingredient groundBeef = new Ingredient(
 "GRBF", "Ground Beef", Type.PROTEIN);
 Ingredient carnitas = new Ingredient(
 "CARN", "Carnitas", Type.PROTEIN);
 Ingredient tomatoes = new Ingredient(
 "TMTO", "Diced Tomatoes", Type.VEGGIES);
 Ingredient lettuce = new Ingredient(
 "LETC", "Lettuce", Type.VEGGIES);
 Ingredient cheddar = new Ingredient(
 "CHED", "Cheddar", Type.CHEESE);
 Ingredient jack = new Ingredient(
 "JACK", "Monterrey Jack", Type.CHEESE);
 Ingredient salsa = new Ingredient(
 "SLSA", "Salsa", Type.SAUCE);
 Ingredient sourCream = new Ingredient(
 "SRCR", "Sour Cream", Type.SAUCE);
 repo.save(flourTortilla);
 repo.save(cornTortilla);
 repo.save(groundBeef);
 repo.save(carnitas);
 repo.save(tomatoes);

168 CHAPTER 7 Creating REST services
 repo.save(lettuce);
 repo.save(cheddar);
 repo.save(jack);
 repo.save(salsa);
 repo.save(sourCream);

 Taco taco1 = new Taco();
 taco1.setName("Carnivore");
 taco1.setIngredients(Arrays.asList(
 flourTortilla, groundBeef, carnitas,
 sourCream, salsa, cheddar));
 tacoRepo.save(taco1);

 Taco taco2 = new Taco();
 taco2.setName("Bovine Bounty");
 taco2.setIngredients(Arrays.asList(
 cornTortilla, groundBeef, cheddar,
 jack, sourCream));
 tacoRepo.save(taco2);

 Taco taco3 = new Taco();
 taco3.setName("Veg-Out");
 taco3.setIngredients(Arrays.asList(
 flourTortilla, cornTortilla, tomatoes,
 lettuce, salsa));
 tacoRepo.save(taco3);
 };
}

Now if you try to use curl or HTTPie to make a request to the recent tacos endpoint,
you’ll get a response something like this (response formatted for readability):

$ curl localhost:8080/api/tacos?recent
[
 {
 "id": 4,
 "name": "Veg-Out",
 "createdAt": "2021-08-02T00:47:09.624+00:00",
 "ingredients": [
 { "id": "FLTO", "name": "Flour Tortilla", "type": "WRAP" },
 { "id": "COTO", "name": "Corn Tortilla", "type": "WRAP" },
 { "id": "TMTO", "name": "Diced Tomatoes", "type": "VEGGIES" },
 { "id": "LETC", "name": "Lettuce", "type": "VEGGIES" },
 { "id": "SLSA", "name": "Salsa", "type": "SAUCE" }
]
 },
 {
 "id": 3,
 "name": "Bovine Bounty",
 "createdAt": "2021-08-02T00:47:09.621+00:00",
 "ingredients": [
 { "id": "COTO", "name": "Corn Tortilla", "type": "WRAP" },
 { "id": "GRBF", "name": "Ground Beef", "type": "PROTEIN" },
 { "id": "CHED", "name": "Cheddar", "type": "CHEESE" },

169Writing RESTful controllers
 { "id": "JACK", "name": "Monterrey Jack", "type": "CHEESE" },
 { "id": "SRCR", "name": "Sour Cream", "type": "SAUCE" }
]
 },
 {
 "id": 2,
 "name": "Carnivore",
 "createdAt": "2021-08-02T00:47:09.520+00:00",
 "ingredients": [
 { "id": "FLTO", "name": "Flour Tortilla", "type": "WRAP" },
 { "id": "GRBF", "name": "Ground Beef", "type": "PROTEIN" },
 { "id": "CARN", "name": "Carnitas", "type": "PROTEIN" },
 { "id": "SRCR", "name": "Sour Cream", "type": "SAUCE" },
 { "id": "SLSA", "name": "Salsa", "type": "SAUCE" },
 { "id": "CHED", "name": "Cheddar", "type": "CHEESE" }
]
 }
]

Now let’s say that you want to offer an endpoint that fetches a single taco by its ID. By
using a placeholder variable in the handler method’s path and accepting a path vari-
able, you can capture the ID and use it to look up the Taco object through the reposi-
tory as follows:

@GetMapping("/{id}")
public Optional<Taco> tacoById(@PathVariable("id") Long id) {
 return tacoRepo.findById(id);
}

Because the controller’s base path is /api/tacos, this controller method handles GET
requests for /api/tacos/{id}, where the {id} portion of the path is a placeholder. The
actual value in the request is given to the id parameter, which is mapped to the {id}
placeholder by @PathVariable.

 Inside of tacoById(), the id parameter is passed to the repository’s findById()
method to fetch the Taco. The repository’s findById() method returns an Optional
<Taco>, because it is possible that there may not be a taco that matches the given ID.
The Optional<Taco> is simply returned from the controller method.

 Spring then takes the Optional<Taco> and calls its get() method to produce the
response. If the ID doesn’t match any known tacos, the response body will contain
“null” and the response’s HTTP status code will be 200 (OK). The client is handed a
response it can’t use, but the status code indicates everything is fine. A better
approach would be to return a response with an HTTP 404 (NOT FOUND) status.

 As it’s currently written, there’s no easy way to return a 404 status code from taco-
ById(). But if you make a few small tweaks, you can set the status code appropriately,
as shown here:

@GetMapping("/{id}")
public ResponseEntity<Taco> tacoById(@PathVariable("id") Long id) {
 Optional<Taco> optTaco = tacoRepo.findById(id);

170 CHAPTER 7 Creating REST services
 if (optTaco.isPresent()) {
 return new ResponseEntity<>(optTaco.get(), HttpStatus.OK);
 }
 return new ResponseEntity<>(null, HttpStatus.NOT_FOUND);
}

Now, instead of returning a Taco object, tacoById() returns a ResponseEntity<Taco>.
If the taco is found, you wrap the Taco object in a ResponseEntity with an HTTP sta-
tus of OK (which is what the behavior was before). But if the taco isn’t found, you
wrap a null in a ResponseEntity along with an HTTP status of NOT FOUND to indi-
cate that the client is trying to fetch a taco that doesn’t exist.

 Defining an endpoint that returns information is only the start. What if your API
needs to receive data from the client? Let’s see how you can write controller methods
that handle input on the requests.

7.1.2 Sending data to the server

So far your API is able to return up to a dozen of the most recently created tacos. But
how do those tacos get created in the first place?

 Although you could use a CommandLineRunner bean to preload the database with
some test taco data, ultimately taco data will come from users when they craft their
taco creations. Therefore, we’ll need to write a method in TacoController that han-
dles requests containing taco designs and save them to the database. By adding the
following postTaco() method to TacoController, you enable the controller to do
exactly that:

@PostMapping(consumes="application/json")
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
 return tacoRepo.save(taco);
}

Because postTaco() will handle an HTTP POST request, it’s annotated with @Post-
Mapping instead of @GetMapping. You’re not specifying a path attribute here, so the
postTaco() method will handle requests for /api/tacos as specified in the class-level
@RequestMapping on TacoController.

 You do set the consumes attribute, however. The consumes attribute is to request
input what produces is to request output. Here you use consumes to say that the
method will only handle requests whose Content-type matches application/json.

 The method’s Taco parameter is annotated with @RequestBody to indicate that the
body of the request should be converted to a Taco object and bound to the parameter.
This annotation is important—without it, Spring MVC would assume that you want
request parameters (either query parameters or form parameters) to be bound to the
Taco object. But the @RequestBody annotation ensures that JSON in the request body
is bound to the Taco object instead.

171Writing RESTful controllers
 Once postTaco() has received the Taco object, it passes it to the save() method
on the TacoRepository.

 You may have also noticed that I’ve annotated the postTaco() method with
@ResponseStatus(HttpStatus.CREATED). Under normal circumstances (when no
exceptions are thrown), all responses will have an HTTP status code of 200 (OK),
indicating that the request was successful. Although an HTTP 200 response is always
welcome, it’s not always descriptive enough. In the case of a POST request, an HTTP
status of 201 (CREATED) is more descriptive. It tells the client that not only was the
request successful but a resource was created as a result. It’s always a good idea to use
@ResponseStatus where appropriate to communicate the most descriptive and accu-
rate HTTP status code to the client.

 Although you’ve used @PostMapping to create a new Taco resource, POST requests
can also be used to update resources. Even so, POST requests are typically used for
resource creation, and PUT and PATCH requests are used to update resources. Let’s see
how you can update data using @PutMapping and @PatchMapping.

7.1.3 Updating data on the server

Before you write any controller code for handling HTTP PUT or PATCH commands, you
should take a moment to consider the elephant in the room: why are there two differ-
ent HTTP methods for updating resources?

 Although it’s true that PUT is often used to update resource data, it’s actually the
semantic opposite of GET. Whereas GET requests are for transferring data from the server
to the client, PUT requests are for sending data from the client to the server.

 In that sense, PUT is really intended to perform a wholesale replacement operation
rather than an update operation. In contrast, the purpose of HTTP PATCH is to per-
form a patch or partial update of resource data.

 For example, suppose you want to be able to change the address on an order. One
way we could achieve this through the REST API is with a PUT request handled like this:

@PutMapping(path="/{orderId}", consumes="application/json")
public TacoOrder putOrder(
 @PathVariable("orderId") Long orderId,
 @RequestBody TacoOrder order) {
 order.setId(orderId);
 return repo.save(order);
}

This could work, but it would require that the client submit the complete order data in
the PUT request. Semantically, PUT means “put this data at this URL,” essentially replacing
any data that’s already there. If any of the order’s properties are omitted, that property’s
value would be overwritten with null. Even the tacos in the order would need to be set
along with the order data or else they’d be removed from the order.

 If PUT does a wholesale replacement of the resource data, then how should you
handle requests to do just a partial update? That’s what HTTP PATCH requests and

172 CHAPTER 7 Creating REST services
Spring’s @PatchMapping are good for. Here’s how you might write a controller method
to handle a PATCH request for an order:

@PatchMapping(path="/{orderId}", consumes="application/json")
public TacoOrder patchOrder(@PathVariable("orderId") Long orderId,
 @RequestBody TacoOrder patch) {

 TacoOrder order = repo.findById(orderId).get();
 if (patch.getDeliveryName() != null) {
 order.setDeliveryName(patch.getDeliveryName());
 }
 if (patch.getDeliveryStreet() != null) {
 order.setDeliveryStreet(patch.getDeliveryStreet());
 }
 if (patch.getDeliveryCity() != null) {
 order.setDeliveryCity(patch.getDeliveryCity());
 }
 if (patch.getDeliveryState() != null) {
 order.setDeliveryState(patch.getDeliveryState());
 }
 if (patch.getDeliveryZip() != null) {
 order.setDeliveryZip(patch.getDeliveryZip());
 }
 if (patch.getCcNumber() != null) {
 order.setCcNumber(patch.getCcNumber());
 }
 if (patch.getCcExpiration() != null) {
 order.setCcExpiration(patch.getCcExpiration());
 }
 if (patch.getCcCVV() != null) {
 order.setCcCVV(patch.getCcCVV());
 }
 return repo.save(order);
}

The first thing to note here is that the patchOrder() method is annotated with
@PatchMapping instead of @PutMapping, indicating that it should handle HTTP PATCH
requests instead of PUT requests.

 But the one thing you’ve no doubt noticed is that the patchOrder() method is a
bit more involved than the putOrder() method. That’s because Spring MVC’s map-
ping annotations, including @PatchMapping and @PutMapping, specify only what kinds
of requests a method should handle. These annotations don’t dictate how the request
will be handled. Even though PATCH semantically implies a partial update, it’s up to
you to write code in the handler method that actually performs such an update.

 In the case of the putOrder() method, you accepted the complete data for an
order and saved it, adhering to the semantics of HTTP PUT. But in order for patch-
Mapping() to adhere to the semantics of HTTP PATCH, the body of the method
requires more intelligence. Instead of completely replacing the order with the new
data sent in, it inspects each field of the incoming TacoOrder object and applies any
non-null values to the existing order. This approach allows the client to send only the

173Writing RESTful controllers
properties that should be changed and enables the server to retain existing data for
any properties not specified by the client.

In both @PutMapping and @PatchMapping, notice that the request path references the
resource that’s to be changed. This is the same way paths are handled by @GetMapping-
annotated methods.

 You’ve now seen how to fetch and post resources with @GetMapping and @Post-
Mapping. And you’ve seen two different ways of updating a resource with @PutMapping
and @PatchMapping. All that’s left is handling requests to delete a resource.

7.1.4 Deleting data from the server

Sometimes data simply isn’t needed anymore. In those cases, a client should be able to
request that a resource be removed with an HTTP DELETE request.

 Spring MVC’s @DeleteMapping comes in handy for declaring methods that handle
DELETE requests. For example, let’s say you want your API to allow for an order
resource to be deleted. The following controller method should do the trick:

@DeleteMapping("/{orderId}")
@ResponseStatus(HttpStatus.NO_CONTENT)
public void deleteOrder(@PathVariable("orderId") Long orderId) {
 try {
 repo.deleteById(orderId);
 } catch (EmptyResultDataAccessException e) {}
}

By this point, the idea of another mapping annotation should be old hat to you.
You’ve already seen @GetMapping, @PostMapping, @PutMapping, and @PatchMapping—
each specifying that a method should handle requests for their corresponding HTTP
methods. It will probably come as no surprise to you that @DeleteMapping is used to

There’s more than one way to PATCH
The patching approach applied in the patchOrder() method has the following
limitations:

 If null values are meant to specify no change, how can the client indicate
that a field should be set to null?

 There’s no way of removing or adding a subset of items from a collection. If
the client wants to add or remove an entry from a collection, it must send the
complete altered collection.

There’s really no hard-and-fast rule about how PATCH requests should be handled or
what the incoming data should look like. Rather than sending the actual domain data,
a client could send a patch-specific description of the changes to be applied. Of
course, the request handler would have to be written to handle patch instructions
instead of the domain data.

174 CHAPTER 7 Creating REST services
specify that the deleteOrder() method is responsible for handling DELETE requests
for /orders/{orderId}.

 The code within the method is what does the actual work of deleting an order. In
this case, it takes the order ID, provided as a path variable in the URL, and passes it to
the repository’s deleteById() method. If the order exists when that method is called,
it will be deleted. If the order doesn’t exist, an EmptyResultDataAccessException will
be thrown.

 I’ve chosen to catch the EmptyResultDataAccessException and do nothing with
it. My thinking here is that if you try to delete a resource that doesn’t exist, the out-
come is the same as if it did exist prior to deletion—that is, the resource will be non-
existent. Whether it existed before is irrelevant. Alternatively, I could’ve written
deleteOrder() to return a ResponseEntity, setting the body to null and the HTTP
status code to NOT FOUND.

 The only other thing to take note of in the deleteOrder() method is that it’s
annotated with @ResponseStatus to ensure that the response’s HTTP status is 204
(NO CONTENT). There’s no need to communicate any resource data back to the cli-
ent for a resource that no longer exists, so responses to DELETE requests typically have
no body and, therefore, should communicate an HTTP status code to let the client
know not to expect any content.

 Your Taco Cloud API is starting to take shape. Now a client can be written to con-
sume this API, presenting ingredients, accepting orders, and displaying recently cre-
ated tacos. We’ll talk about writing REST client code a little later in 7.3. But for now,
let’s see another way to create REST API endpoints: automatically based on Spring
Data repositories.

7.2 Enabling data-backed services
As you saw in chapter 3, Spring Data performs a special kind of magic by automati-
cally creating repository implementations based on interfaces you define in your
code. But Spring Data has another trick up its sleeve that can help you define APIs
for your application.

 Spring Data REST is another member of the Spring Data family that automatically
creates REST APIs for repositories created by Spring Data. By doing little more than
adding Spring Data REST to your build, you get an API with operations for each
repository interface you’ve defined.

 To start using Spring Data REST, add the following dependency to your build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

Believe it or not, that’s all that’s required to expose a REST API in a project that’s
already using Spring Data for automatic repositories. By simply having the Spring
Data REST starter in the build, the application gets autoconfiguration that enables

175Enabling data-backed services
automatic creation of a REST API for any repositories that were created by Spring
Data (including Spring Data JPA, Spring Data Mongo, and so on).

 The REST endpoints that Spring Data REST creates are at least as good as (and
possibly even better than) the ones you’ve created yourself. So at this point, feel free
to do a little demolition work and remove any @RestController-annotated classes
you’ve created up to this point before moving on.

 To try out the endpoints provided by Spring Data REST, you can fire up the appli-
cation and start poking at some of the URLs. Based on the set of repositories you’ve
already defined for Taco Cloud, you should be able to perform GET requests for tacos,
ingredients, orders, and users.

 For example, you can get a list of all ingredients by making a GET request for
/ingredients. Using curl, you might get something that looks like this (abridged to
show only the first ingredient):

$ curl localhost:8080/ingredients
{
 "_embedded" : {
 "ingredients" : [{
 "name" : "Flour Tortilla",
 "type" : "WRAP",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 },
 "ingredient" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 }
 }
 },
 ...
]
 },
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/ingredients"
 },
 "profile" : {
 "href" : "http://localhost:8080/profile/ingredients"
 }
 }
}

Wow! By doing nothing more than adding a dependency to your build, you’re not
only getting an endpoint for ingredients, but the resources that come back also con-
tain hyperlinks! These hyperlinks are implementations of Hypermedia as the Engine
of Application State, or HATEOAS for short. A client consuming this API could
(optionally) use these hyperlinks as a guide for navigating the API and performing
the next request.

176 CHAPTER 7 Creating REST services
 The Spring HATEOAS project (https://spring.io/projects/spring-hateoas) pro-
vides general support for adding hypermedia links in your Spring MVC controller
responses. But Spring Data REST automatically adds these links in the responses to its
generated APIs.

Pretending to be a client of this API, you can also use curl to follow the self link for
the flour tortilla entry as follows:

$ curl http://localhost:8080/ingredients/FLTO
{
 "name" : "Flour Tortilla",
 "type" : "WRAP",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 },
 "ingredient" : {
 "href" : "http://localhost:8080/ingredients/FLTO"
 }
 }
}

To avoid getting too distracted, we won’t waste much more time in this book digging
into each and every endpoint and option that Spring Data REST has created. But you
should know that it also supports POST, PUT, and DELETE methods for the endpoints it
creates. That’s right: you can POST to /ingredients to create a new ingredient and
DELETE /ingredients/FLTO to remove flour tortillas from the menu.

 One thing you might want to do is set a base path for the API so that its endpoints
are distinct and don’t collide with any controllers you write. To adjust the base path
for the API, set the spring.data.rest.base-path property as shown next:

To HATEOAS or not to HATEOAS?
The general idea of HATEOAS is that it enables a client to navigate an API in much
the same way that a human may navigate a website: by following links. Rather than
encode API details in a client and having the client construct URLs for every request,
the client can select a link, by name, from the list of hyperlinks and use it to make
their next request. In this way, the client doesn’t need to be coded to know the struc-
ture of an API and can instead use the API itself as a roadmap through the API.

On the other hand, the hyperlinks do add a small amount of extra data in the payload
and add some complexity requiring that the client know how to navigate using those
hyperlinks. For this reason, API developers often forego the use of HATEOAS, and cli-
ent developers often simply ignore the hyperlinks if there are any in an API.

Other than the free hyperlinks you get from Spring Data REST responses, we’ll ignore
HATEOAS and focus on simple, nonhypermedia APIs.

https://spring.io/projects/spring-hateoas

177Enabling data-backed services
spring:
 data:
 rest:
 base-path: /data-api

This sets the base path for Spring Data REST endpoints to /data-api. Although you
can set the base path to anything you’d like, the choice of /data-api ensures that end-
points exposed by Spring Data REST don’t collide with any other controllers, includ-
ing those whose path begins with “/api” that we created earlier in this chapter.
Consequently, the ingredients endpoint is now /data-api/ingredients. Now give this
new base path a spin by requesting a list of tacos as follows:

$ curl http://localhost:8080/data-api/tacos
{
 "timestamp": "2018-02-11T16:22:12.381+0000",
 "status": 404,
 "error": "Not Found",
 "message": "No message available",
 "path": "/api/tacos"
}

Oh dear! That didn’t work quite as expected. You have an Ingredient entity and an
IngredientRepository interface, which Spring Data REST exposed with a /data-
api/ingredients endpoint. So if you have a Taco entity and a TacoRepository inter-
face, why doesn’t Spring Data REST give you a /data-api/tacos endpoint?

7.2.1 Adjusting resource paths and relation names

Actually, Spring Data REST does give you an endpoint for working with tacos. But as
clever as Spring Data REST can be, it shows itself to be a tiny bit less awesome in how it
exposes the tacos endpoint.

 When creating endpoints for Spring Data repositories, Spring Data REST tries to
pluralize the associated entity class. For the Ingredient entity, the endpoint is /data-
api/ingredients. For the TacoOrder entity, it’s /data-api/orders. So far, so good.

 But sometimes, such as with “taco,” it trips up on a word and the pluralized ver-
sion isn’t quite right. As it turns out, Spring Data REST pluralized “taco” as “tacoes,”
so to make a request for tacos, you must play along and request /data-api/tacoes, as
shown here:

$ curl localhost:8080/data-api/tacoes
{
 "_embedded" : {
 "tacoes" : [{
 "name" : "Carnivore",
 "createdAt" : "2018-02-11T17:01:32.999+0000",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/data-api/tacoes/2"
 },

178 CHAPTER 7 Creating REST services
 "taco" : {
 "href" : "http://localhost:8080/data-api/tacoes/2"
 },
 "ingredients" : {
 "href" : "http://localhost:8080/data-api/tacoes/2/ingredients"
 }
 }
 }]
 },
 "page" : {
 "size" : 20,
 "totalElements" : 3,
 "totalPages" : 1,
 "number" : 0
 }
}

You may be wondering how I knew that “taco” would be mispluralized as “tacoes.” As it
turns out, Spring Data REST also exposes a home resource that lists links for all exposed
endpoints. Just make a GET request to the API base path to get the goods as follows:

$ curl localhost:8080/api
{
 "_links" : {
 "orders" : {
 "href" : "http://localhost:8080/data-api/orders"
 },
 "ingredients" : {
 "href" : "http://localhost:8080/data-api/ingredients"
 },
 "tacoes" : {
 "href" : "http://localhost:8080/data-api/tacoes{?page,size,sort}",
 "templated" : true
 },
 "users" : {
 "href" : "http://localhost:8080/data-api/users"
 },
 "profile" : {
 "href" : "http://localhost:8080/data-api/profile"
 }
 }
}

As you can see, the home resource shows the links for all of your entities. Everything
looks good, except for the tacoes link, where both the relation name and the URL
have that odd pluralization of “taco.”

 The good news is that you don’t have to accept this little quirk of Spring Data
REST. By adding the following simple annotation to the Taco class, you can tweak
both the relation name and that path:

@Data
@Entity

179Enabling data-backed services
@RestResource(rel="tacos", path="tacos")
public class Taco {
 ...
}

The @RestResource annotation lets you give the entity any relation name and path
you want. In this case, you’re setting them both to "tacos". Now when you request the
home resource, you see the tacos link with correct pluralization, as shown next:

"tacos" : {
 "href" : "http://localhost:8080/data-api/tacos{?page,size,sort}",
 "templated" : true
},

This also sorts out the path for the endpoint so that you can issue requests against
/data-api/tacos to work with taco resources.

 Speaking of sorting things out, let’s look at how you can sort the results from
Spring Data REST endpoints.

7.2.2 Paging and sorting

You may have noticed that the links in the home resource all offer optional page,
size, and sort parameters. By default, requests to a collection resource such as /data-
api/tacos will return up to 20 items per page from the first page. But you can adjust
the page size and the page displayed by specifying the page and size parameters in
your request.

 For example, to request the first page of tacos where the page size is 5, you can
issue the following GET request (using curl):

$ curl "localhost:8080/data-api/tacos?size=5"

Assuming there are more than five tacos to be seen, you can request the second page
of tacos by adding the page parameter as follows:

$ curl "localhost:8080/data-api/tacos?size=5&page=1"

Notice that the page parameter is zero-based, which means that asking for page 1 is
actually asking for the second page. (You’ll also note that many command-line shells
trip up over the ampersand in the request, which is why I quoted the whole URL in
the preceding curl command.)

 The sort parameter lets you sort the resulting list by any property of the entity. For
example, you need a way to fetch the 12 most recently created tacos for the UI to dis-
play. You can do that by specifying the following mix of paging and sorting parameters:

$ curl "localhost:8080/data-api/tacos?sort=createdAt,desc&page=0&size=12"

Here the sort parameter specifies that you should sort by the createdDate property
and that it should be sorted in descending order (so that the newest tacos are first).
The page and size parameters specify that you should see the first page of 12 tacos.

180 CHAPTER 7 Creating REST services
 This is precisely what the UI needs to show the most recently created tacos. It’s
approximately the same as the /api/tacos?recent endpoint you defined in Taco-
Controller earlier in this chapter.

 Now let’s switch gears and see how to write client code to consume the API end-
points we’ve created.

7.3 Consuming REST services
Have you ever gone to a movie and, as the movie starts, discovered that you were the
only person in the theater? It certainly is a wonderful experience to have what is essen-
tially a private viewing of a movie. You can pick whatever seat you want, talk back to
the characters onscreen, and maybe even open your phone and tweet about it without
anyone getting angry for disrupting their movie-watching experience. And the best
part is that nobody else is there ruining the movie for you, either!

 This hasn’t happened to me often. But when it has, I have wondered what would
have happened if I hadn’t shown up. Would they still have shown the film? Would the
hero still have saved the day? Would the theater staff still have cleaned the theater
after the movie was over?

 A movie without an audience is kind of like an API without a client. It’s ready to
accept and provide data, but if the API is never invoked, is it really an API? Like
Schrödinger’s cat, we can’t know if the API is active or returning HTTP 404 responses
until we issue a request to it.

 It’s not uncommon for Spring applications to both provide an API and make
requests to another application’s API. In fact, this is becoming prevalent in the world
of microservices. Therefore, it’s worthwhile to spend a moment looking at how to use
Spring to interact with REST APIs.

 A Spring application can consume a REST API with the following:

 RestTemplate—A straightforward, synchronous REST client provided by the
core Spring Framework.

 Traverson—A wrapper around Spring’s RestTemplate, provided by Spring
HATEOAS, to enable a hyperlink-aware, synchronous REST client. Inspired
from a JavaScript library of the same name.

 WebClient—A reactive, asynchronous REST client.

For now, we’ll focus on creating clients with RestTemplate. I’ll defer discussion of
WebClient until we cover Spring’s reactive web framework in chapter 12. And if you’re
interested in writing hyperlink-aware clients, check out the Traverson documentation
at http://mng.bz/aZno.

 There’s a lot that goes into interacting with a REST resource from the client’s per-
spective—mostly tedium and boilerplate. Working with low-level HTTP libraries, the
client needs to create a client instance and a request object, execute the request, inter-
pret the response, map the response to domain objects, and handle any exceptions
that may be thrown along the way. And all of this boilerplate is repeated, regardless of
what HTTP request is sent.

http://mng.bz/aZno

181Consuming REST services
 To avoid such boilerplate code, Spring provides RestTemplate. Just as Jdbc-
Template handles the ugly parts of working with JDBC, RestTemplate frees you from
dealing with the tedium of consuming REST resources.

 RestTemplate provides 41 methods for interacting with REST resources. Rather
than examine all of the methods that it offers, it’s easier to consider only a dozen
unique operations, each overloaded to equal the complete set of 41 methods. The 12
operations are described in table 7.2.

With the exception of TRACE, RestTemplate has at least one method for each of the
standard HTTP methods. In addition, execute() and exchange() provide lower-level,
general-purpose methods for sending requests with any HTTP method.

 Most of the methods in table 7.2 are overloaded into the following three method
forms:

 One accepts a String URL specification with URL parameters specified in a
variable argument list.

Table 7.2 RestTemplate defines 12 unique operations, each of which is overloaded, providing a total
of 41 methods.

Method Description

delete(…) Performs an HTTP DELETE request on a resource at a specified URL

exchange(…) Executes a specified HTTP method against a URL, returning a Response-
Entity containing an object mapped from the response body

execute(…) Executes a specified HTTP method against a URL, returning an object
mapped from the response body

getForEntity(…) Sends an HTTP GET request, returning a ResponseEntity containing an
object mapped from the response body

getForObject(…) Sends an HTTP GET request, returning an object mapped from a response
body

headForHeaders(…) Sends an HTTP HEAD request, returning the HTTP headers for the specified
resource URL

optionsForAllow(…) Sends an HTTP OPTIONS request, returning the Allow header for the
specified URL

patchForObject(…) Sends an HTTP PATCH request, returning the resulting object mapped from
the response body

postForEntity(…) POSTs data to a URL, returning a ResponseEntity containing an object
mapped from the response body

postForLocation(…) POSTs data to a URL, returning the URL of the newly created resource

postForObject(…) POSTs data to a URL, returning an object mapped from the response body

put(…) PUTs resource data to the specified URL

182 CHAPTER 7 Creating REST services
 One accepts a String URL specification with URL parameters specified in a
Map<String,String>.

 One accepts a java.net.URI as the URL specification, with no support for
parameterized URLs.

Once you get to know the 12 operations provided by RestTemplate and how each of
the variant forms works, you’ll be well on your way to writing resource-consuming
REST clients.

 To use RestTemplate, you’ll either need to create an instance at the point you
need it, as follows:

RestTemplate rest = new RestTemplate();

or you can declare it as a bean and inject it where you need it, as shown next:

@Bean
public RestTemplate restTemplate() {
 return new RestTemplate();
}

Let’s survey RestTemplate’s operations by looking at those that support the four pri-
mary HTTP methods: GET, PUT, DELETE, and POST. We’ll start with getForObject() and
getForEntity()—the GET methods.

7.3.1 GETting resources

Suppose that you want to fetch an ingredient from the Taco Cloud API. For that, you
can use RestTemplate’s getForObject() to fetch the ingredient. For example, the fol-
lowing code uses RestTemplate to fetch an Ingredient object by its ID:

public Ingredient getIngredientById(String ingredientId) {
 return rest.getForObject("http://localhost:8080/ingredients/{id}",
 Ingredient.class, ingredientId);
}

Here you’re using the getForObject() variant that accepts a String URL and uses a
variable list for URL variables. The ingredientId parameter passed into getFor-
Object() is used to fill in the {id} placeholder in the given URL. Although there’s
only one URL variable in this example, it’s important to know that the variable param-
eters are assigned to the placeholders in the order that they’re given.

 The second parameter to getForObject() is the type that the response should be
bound to. In this case, the response data (that’s likely in JSON format) should be dese-
rialized into an Ingredient object that will be returned.

 Alternatively, you can use a Map to specify the URL variables, as shown next:

public Ingredient getIngredientById(String ingredientId) {
 Map<String, String> urlVariables = new HashMap<>();
 urlVariables.put("id", ingredientId);

183Consuming REST services
 return rest.getForObject("http://localhost:8080/ingredients/{id}",
 Ingredient.class, urlVariables);
}

In this case, the value of ingredientId is mapped to a key of id. When the request is
made, the {id} placeholder is replaced by the map entry whose key is id.

 Using a URI parameter is a bit more involved, requiring that you construct a URI
object before calling getForObject(). Otherwise, it’s similar to both of the other vari-
ants, as shown here:

public Ingredient getIngredientById(String ingredientId) {
 Map<String, String> urlVariables = new HashMap<>();
 urlVariables.put("id", ingredientId);
 URI url = UriComponentsBuilder
 .fromHttpUrl("http://localhost:8080/ingredients/{id}")
 .build(urlVariables);
 return rest.getForObject(url, Ingredient.class);
}

Here the URI object is defined from a String specification, and its placeholders filled
in from entries in a Map, much like the previous variant of getForObject(). The get-
ForObject() method is a no-nonsense way of fetching a resource. But if the client
needs more than the payload body, you may want to consider using getForEntity().

 getForEntity() works in much the same way as getForObject(), but instead of
returning a domain object that represents the response’s payload, it returns a
ResponseEntity object that wraps that domain object. The ResponseEntity gives
access to additional response details, such as the response headers.

 For example, suppose that in addition to the ingredient data, you want to inspect
the Date header from the response. With getForEntity() that becomes straightfor-
ward, as shown in the following code:

public Ingredient getIngredientById(String ingredientId) {
 ResponseEntity<Ingredient> responseEntity =
 rest.getForEntity("http://localhost:8080/ingredients/{id}",
 Ingredient.class, ingredientId);
 log.info("Fetched time: {}",
 responseEntity.getHeaders().getDate());
 return responseEntity.getBody();
}

The getForEntity() method is overloaded with the same parameters as get-
ForObject(), so you can provide the URL variables as a variable list parameter or call
getForEntity() with a URI object.

7.3.2 PUTting resources

For sending HTTP PUT requests, RestTemplate offers the put() method. All three
overloaded variants of put() accept an Object that is to be serialized and sent to the
given URL. As for the URL itself, it can be specified as a URI object or as a String. And

184 CHAPTER 7 Creating REST services
like getForObject() and getForEntity(), the URL variables can be provided as
either a variable argument list or as a Map.

 Suppose that you want to replace an ingredient resource with the data from a new
Ingredient object. The following code should do the trick:

public void updateIngredient(Ingredient ingredient) {
 rest.put("http://localhost:8080/ingredients/{id}",
 ingredient, ingredient.getId());
}

Here the URL is given as a String and has a placeholder that’s substituted by the
given Ingredient object’s id property. The data to be sent is the Ingredient object
itself. The put() method returns void, so there’s nothing you need to do to handle a
return value.

7.3.3 DELETEing resources

Suppose that Taco Cloud no longer offers an ingredient and wants it completely
removed as an option. To make that happen, you can call the delete() method from
RestTemplate as follows:

public void deleteIngredient(Ingredient ingredient) {
 rest.delete("http://localhost:8080/ingredients/{id}",
 ingredient.getId());
}

In this example, only the URL (specified as a String) and a URL variable value are
given to delete(). But as with the other RestTemplate methods, the URL could be
specified as a URI object or the URL parameters given as a Map.

7.3.4 POSTing resource data

Now let’s say that you add a new ingredient to the Taco Cloud menu. An HTTP POST
request to the …/ingredients endpoint with ingredient data in the request body will
make that happen. RestTemplate has three ways of sending a POST request, each of
which has the same overloaded variants for specifying the URL. If you wanted to receive
the newly created Ingredient resource after the POST request, you’d use postFor-
Object() like this:

public Ingredient createIngredient(Ingredient ingredient) {
 return rest.postForObject("http://localhost:8080/ingredients",
 ingredient, Ingredient.class);
}

This variant of the postForObject() method takes a String URL specification, the
object to be posted to the server, and the domain type that the response body
should be bound to. Although you aren’t taking advantage of it in this case, a fourth
parameter could be a Map of the URL variable value or a variable list of parameters
to substitute into the URL.

185Summary
 If your client has more need for the location of the newly created resource, then
you can call postForLocation() instead, as shown here:

public java.net.URI createIngredient(Ingredient ingredient) {
 return rest.postForLocation("http://localhost:8080/ingredients",
 ingredient);
}

Notice that postForLocation() works much like postForObject(), with the excep-
tion that it returns a URI of the newly created resource instead of the resource object
itself. The URI returned is derived from the response’s Location header. In the off
chance that you need both the location and response payload, you can call post-
ForEntity() like so:

public Ingredient createIngredient(Ingredient ingredient) {
 ResponseEntity<Ingredient> responseEntity =
 rest.postForEntity("http://localhost:8080/ingredients",
 ingredient,
 Ingredient.class);
 log.info("New resource created at {}",
 responseEntity.getHeaders().getLocation());
 return responseEntity.getBody();
}

Although the methods of RestTemplate differ in their purpose, they’re quite similar
in how they’re used. This makes it easy to become proficient with RestTemplate and
use it in your client code.

Summary
 REST endpoints can be created with Spring MVC, with controllers that follow

the same programming model as browser-targeted controllers.
 Controller handler methods can either be annotated with @ResponseBody or

return ResponseEntity objects to bypass the model and view and write data
directly to the response body.

 The @RestController annotation simplifies REST controllers, eliminating the
need to use @ResponseBody on handler methods.

 Spring Data repositories can automatically be exposed as REST APIs using
Spring Data REST.

Securing REST
Have you ever taken advantage of valet parking? It’s a simple concept: you hand
your car keys to a valet near the entrance of a store, hotel, theater, or restaurant,
and they deal with the hassle of finding a parking space for you. And then they
return your car to you when you ask for it. Maybe it’s because I’ve seen Ferris Buel-
ler’s Day Off too many times, but I’m always reluctant to hand my car keys to a
stranger and hope that they take good care of my vehicle for me.

 Nonetheless, valet parking involves granting trust to someone to take care of
your car. Many newer cars provide a “valet key,” a special key that can be used only
to open the car doors and start the engine. This way the amount of trust that you
are granting is limited in scope. The valet cannot open the glove compartment or
the trunk with the valet key.

 In a distributed application, trust is critical between software systems. Even in a
simple situation where a client application consumes a backend API, it’s important

This chapter covers
 Securing APIs with OAuth 2

 Creating an authorization server

 Adding a resource server to an API

 Consuming OAuth 2–secured APIs
186

187Introducing OAuth 2
that the client is trusted and anyone else attempting to use that same API is blocked
out. And, like the valet, the amount of trust you grant to a client should be limited to
only the functions necessary for the client to do its job.

 Securing a REST API is different from securing a browser-based web application.
In this chapter, we’re going to look at OAuth 2, an authorization specification created
specifically for API security. In doing so, we’ll look at Spring Security’s support for
OAuth 2. But first, let’s set the stage by seeing how OAuth 2 works.

8.1 Introducing OAuth 2
Suppose that we want to create a new back-office application for managing the Taco
Cloud application. More specifically, let’s say that we want this new application to be
able to manage the ingredients available on the main Taco Cloud website.

 Before we start writing code for the administrative application, we’ll need to add a
handful of new endpoints to the Taco Cloud API to support ingredient management.
The REST controller in the following listing offers three endpoints for listing, adding,
and deleting ingredients.

package tacos.web.api;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.CrossOrigin;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;

import tacos.Ingredient;
import tacos.data.IngredientRepository;

@RestController
@RequestMapping(path="/api/ingredients", produces="application/json")
@CrossOrigin(origins="http:/ /localhost:8080")
public class IngredientController {

 private IngredientRepository repo;

 @Autowired
 public IngredientController(IngredientRepository repo) {
 this.repo = repo;
 }

 @GetMapping
 public Iterable<Ingredient> allIngredients() {

Listing 8.1 A controller to manage available ingredients

188 CHAPTER 8 Securing REST
 return repo.findAll();
 }

 @PostMapping
 @ResponseStatus(HttpStatus.CREATED)
 public Ingredient saveIngredient(@RequestBody Ingredient ingredient) {
 return repo.save(ingredient);
 }

 @DeleteMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 public void deleteIngredient(@PathVariable("id") String ingredientId) {
 repo.deleteById(ingredientId);
 }

}

Great! Now all we need to do is get started on the administrative application, call-
ing those endpoints on the main Taco Cloud application as needed to add and
delete ingredients.

 But wait—there’s no security around that API yet. If our backend application can
make HTTP requests to add and delete ingredients, so can anyone else. Even using
the curl command-line client, someone could add a new ingredient like this:

$ curl localhost:8080/ingredients \
 -H"Content-type: application/json" \
 -d'{"id":"FISH","name":"Stinky Fish", "type":"PROTEIN"}'

They could even use curl to delete existing ingredients1 as follows:

$ curl localhost:8080/ingredients/GRBF -X DELETE

This API is part of the main application and available to the world; in fact, the GET
endpoint is used by the user interface of the main application in home.html. There-
fore, it’s clear that we’ll need to secure at least the POST and DELETE endpoints.

 One option is to use HTTP Basic authentication to secure the /ingredients end-
points. This could be done by adding @PreAuthorize to the handler methods like this:

@PostMapping
@PreAuthorize("#{hasRole('ADMIN')}")
public Ingredient saveIngredient(@RequestBody Ingredient ingredient) {
 return repo.save(ingredient);
}

@DeleteMapping("/{id}")
@PreAuthorize("#{hasRole('ADMIN')}")
public void deleteIngredient(@PathVariable("id") String ingredientId) {

1 Depending on the database and schema in play, integrity constraints may prevent a deletion from happening
if an ingredient is already part of an existing taco. But it still may be possible to delete an ingredient if the
database schema allows it.

189Introducing OAuth 2
 repo.deleteById(ingredientId);
}

Or, the endpoints could be secured in the security configuration like this:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers(HttpMethod.POST, "/ingredients").hasRole("ADMIN")
 .antMatchers(HttpMethod.DELETE, "/ingredients/**").hasRole("ADMIN")

 ...
}

Either way, the ability to submit POST or DELETE requests to /ingredients will require
that the submitter also provide credentials that have "ROLE_ADMIN" authority. For
example, using curl, the credentials can be specified with the -u parameter, as
shown here:

$ curl localhost:8080/ingredients \
 -H"Content-type: application/json" \
 -d'{"id":"FISH","name":"Stinky Fish", "type":"PROTEIN"}' \
 -u admin:l3tm31n

Although HTTP Basic will lock down the API, it is rather . . . um . . . basic. It requires
that the client and the API share common knowledge of the user credentials, possibly
duplicating information. Moreover, although HTTP Basic credentials are Base64-
encoded in the header of the request, if a hacker were to somehow intercept the
request, the credentials could easily be obtained, decoded, and used for evil purposes.
If that were to happen, the password would need to be changed, thus requiring an
update and reauthentication in all clients.

Whether or not to use the “ROLE_” prefix
Authorities in Spring Security can take several forms, including roles, permissions,
and (as we’ll see later) OAuth2 scopes. Roles, specifically, are a specialized form of
authority that are prefixed with "ROLE_".

When working with methods or SpEL expressions that deal directly with roles, such
as hasRole(), the "ROLE_" prefix is inferred. Thus, a call to hasRole("ADMIN") is
internally checking for an authority whose name is "ROLE_ADMIN". You do not need
to explicitly use the "ROLE_" prefix when calling these methods and functions (and,
in fact, doing so will result in a double "ROLE_" prefix).

Other Spring Security methods and functions that deal with authority more generically
can also be used to check for roles. But in those cases, you must explicitly add the
"ROLE_" prefix. For example, if you chose to use hasAuthority() instead of has-
Role(), you’d need to pass in "ROLE_ADMIN" instead of "ADMIN".

190 CHAPTER 8 Securing REST
 What if instead of requiring that the admin user identify themselves on every
request, the API just asks for some token that proves that they are authorized to access
the resources? This would be roughly like a ticket to a sporting event. To enter the
game, the person at the turnstiles doesn’t need to know who you are; they just need to
know that you have a valid ticket. If so, then you are allowed access.

 That’s roughly how OAuth 2 authorization works. Clients request an access
token—analogous to a valet key—from an authorization server, with the express per-
mission of a user. That token allows them to interact with an API on behalf of the user
who authorized the client. At any point, the token could expire or be revoked, without
requiring that the user’s password be changed. In such cases, the client would just
need to request a new access token to be able to continue acting on the user’s behalf.
This flow is illustrated in figure 8.1.

OAuth 2 is a very rich security specification that offers a lot of ways to use it. The flow
described in figure 8.1 is called authorization code grant. Other flows supported by the
OAuth 2 specification include these:

 Implicit grant—Like authorization code grant, implicit grant redirects the user’s
browser to the authorization server to get user consent. But when redirecting
back, rather than provide an authorization code in the request, the access
token is granted implicitly in the request. Although originally designed for
JavaScript clients running in a browser, this flow is not generally recommended
anymore, and authorization code grant is preferred.

 User credentials (or password) grant—In this flow, no redirect takes place, and there
may not even be a web browser involved. Instead, the client application obtains the

User

7. Request resource

8. Return response

Authorization

server

Client

application
API

R
e
s
o
u
rc

e

s
e
rv

e
r

9. Respond to user

1. User interacts with client
6. E

xc
hange c

ode fo
r a

cc
ess

 to
ke

n

5. R
edire

ct
 b

ack
 to

 c
lie

nt w
ith

 a
uth

 c
ode

2. R
edire

ct
 b

ro
wse

r t
o re

quest
 a

uth
oriz

atio
n

4. Grant consent

3. Ask user for authorization consent

Figure 8.1 The OAuth 2 authorization code flow

191Introducing OAuth 2
user’s credentials and exchanges them directly for an access token. This flow
seems suitable for clients that are not browser based, but modern applications
often favor asking the user to go to a website in their browser and perform autho-
rization code grant to avoid having to handle the user’s credentials.

 Client credentials grant—This flow is like user credentials grant, except that
instead of exchanging a user’s credentials for an access token, the client
exchanges its own credentials for an access token. However, the token granted
is limited in scope to performing non-user-focused operations and can’t be
used to act on behalf of a user.

For our purposes, we’re going to focus on the authorization code grant flow to obtain
a JSON Web Token (JWT) access token. This will involve creating a handful of applica-
tions that work together, including the following:

 The authorization server—An authorization server’s job is to obtain permission
from a user on behalf of a client application. If the user grants permission, then
the authorization server gives an access token to the client application that it
can use to gain authenticated access to an API.

 The resource server—A resource server is just another name for an API that is
secured by OAuth 2. Although the resource server is part of the API itself, for
the sake of discussion, the two are often treated as two distinct concepts. The
resource server restricts access to its resources unless the request provides a
valid access token with the necessary permission scope. For our purposes, the
Taco Cloud API we started in chapter 7 will serve as our resource server, once
we add a bit of security configuration to it.

 The client application—The client application is an application that wants to con-
sume an API but needs permission to do so. We’ll build a simple administrative
application for Taco Cloud to be able to add new ingredients.

 The user—This is the human who uses the client application and grants the
application permission to access the resource server’s API on their behalf.

In the authorization code grant flow, a series of browser redirects between the client
application and the authorization server occurs as the client obtains an access token.
It starts with the client redirecting the user’s browser to the authorization server, ask-
ing for specific permissions (or “scope”). The authorization server then asks the user
to log in and consent to the requested permissions. After the user has granted con-
sent, the authorization server redirects the browser back to the client with a code that
the client can then exchange for an access token. Once the client has the access
token, it can then be used to interact with the resource server API by passing it in the
"Authorization" header of every request.

 Although we’re going to restrict our focus on a specific use of OAuth 2, you are
encouraged to dig deeper into the subject by reading the OAuth 2 specification
(https://oauth.net/2/) or reading any one of the following books on the subject:

https://oauth.net/2/

192 CHAPTER 8 Securing REST
 OAuth 2 in Action: https://www.manning.com/books/oauth-2-in-action
 Microservices Security in Action: https://www.manning.com/books/microservices-

security-in-action
 API Security in Action: https://www.manning.com/books/api-security-in-action

You might also want to have a look at a liveProject called “Protecting User Data with
Spring Security and OAuth2” (http://mng.bz/4KdD).

 For several years, a project called Spring Security for OAuth provided support for
both OAuth 1.0a and OAuth 2. It was separate from Spring Security but developed by
the same team. In recent years, however, the Spring Security team has absorbed the
client and resource server components into Spring Security itself.

 As for the authorization server, it was decided that it not be included in Spring
Security. Instead, developers are encouraged to use authorization servers from various
vendors such as Okta, Google, and others. But, due to demand from the developer
community, the Spring Security team started a Spring Authorization Server project.2

This project is labeled as “experimental” and is intended to eventually be community
driven, but it serves as a great way to get started with OAuth 2 without signing up for
one of those other authorization server implementations.

 Throughout the rest of this chapter, we’re going to see how to use OAuth 2 using
Spring Security. Along the way, we’ll create two new projects, an authorization server
project and a client project, and we’ll modify our existing Taco Cloud project such
that its API acts as a resource server. We’ll start by creating an authorization server
using the Spring Authorization Server project.

8.2 Creating an authorization server
An authorization server’s job is primarily to issue an access token on behalf of a user. As
mentioned earlier, we have several authorization server implementations to choose from,
but we’re going to use Spring Authorization Server for our project. Spring Authorization
Server is experimental and doesn’t implement all of the OAuth 2 grant types, but it does
implement the authorization code grant and client credentials grant.

 The authorization server is a distinct application from any application that pro-
vides the API and is also distinct from the client. Therefore, to get started with Spring
Authorization Server, you’ll want to create a new Spring Boot project, choosing (at
least) the web and security starters. For our authorization server, users will be stored in
a relational database using JPA, so be sure to add the JPA starter and H2 dependencies
as well. And, if you’re using Lombok to handle getters, setters, constructors, and what-
not, then be sure to include it as well.

 Spring Authorization Server isn’t (yet) available as a dependency from the Initial-
izr. So once your project has been created, you’ll need to manually add the Spring

2 See http://mng.bz/QqGR.

https://www.manning.com/books/api-security-in-action
http://mng.bz/4KdD
http://mng.bz/QqGR
https://www.manning.com/books/microservices-security-in-action
https://www.manning.com/books/microservices-security-in-action
https://www.manning.com/books/oauth-2-in-action

193Creating an authorization server
Authorization Server dependency to your build. For example, here’s the Maven
dependency you’ll need to include in your pom.xml file:

<dependency>
 <groupId>org.springframework.security.experimental</groupId>
 <artifactId>spring-security-oauth2-authorization-server</artifactId>
 <version>0.1.2</version>
</dependency>

Next, because we’ll be running this all on our development machines (at least for now),
you’ll want to make sure that there’s not a port conflict between the main Taco Cloud
application and the authorization server. Adding the following entry to the project’s
application.yml file will make the authorization server available on port 9000:

server:
 port: 9000

Now let’s dive into the essential security configuration that will be used by the authori-
zation server. The next code listing shows a very simple Spring Security configuration
class that enables form-based login and requires that all requests be authenticated.

package tacos.authorization;
import org.springframework.context.annotation.Bean;
import org.springframework.security.config.annotation.web.builders.
 HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.
 EnableWebSecurity;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.security.web.SecurityFilterChain;

import tacos.authorization.users.UserRepository;

@EnableWebSecurity
public class SecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 return http
 .authorizeRequests(authorizeRequests ->
 authorizeRequests.anyRequest().authenticated()
)

 .formLogin()

 .and().build();
 }

Listing 8.2 Essential security configuration for form-based login

194 CHAPTER 8 Securing REST
 @Bean
 UserDetailsService userDetailsService(UserRepository userRepo) {
 return username -> userRepo.findByUsername(username);
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }
}

Notice that the UserDetailsService bean works with a TacoUserRepository to
look up users by their username. To get on with configuring the authorization
server itself, we’ll skip over the specifics of TacoUserRepository, but suffice it to say
that it looks a lot like some of the Spring Data–based repositories we’ve created
since chapter 3.

 The only thing worth noting about the TacoUserRepository is that (for conve-
nience in testing) you could use it in a CommandLineRunner bean to prepopulate the
database with a couple of test users as follows:

@Bean
public ApplicationRunner dataLoader(
 UserRepository repo, PasswordEncoder encoder) {
 return args -> {
 repo.save(
 new User("habuma", encoder.encode("password"), "ROLE_ADMIN"));
 repo.save(
 new User("tacochef", encoder.encode("password"), "ROLE_ADMIN"));
 };
}

Now we can start applying configuration to enable an authorization server. The first
step in configuring an authorization server is to create a new configuration class that
imports some common configuration for an authorization server. The following code
for AuthorizationServerConfig is a good start:

@Configuration(proxyBeanMethods = false)
public class AuthorizationServerConfig {

 @Bean
 @Order(Ordered.HIGHEST_PRECEDENCE)
 public SecurityFilterChain

authorizationServerSecurityFilterChain(HttpSecurity http) throws
Exception {

 OAuth2AuthorizationServerConfiguration
 .applyDefaultSecurity(http);
 return http
 .formLogin(Customizer.withDefaults())
 .build();
 }

195Creating an authorization server
 ...

}

The authorizationServerSecurityFilterChain() bean method defines a Security-
FilterChain that sets up some default behavior for the OAuth 2 authorization server
and a default form login page. The @Order annotation is given Ordered.HIGHEST_
PRECEDENCE to ensure that if for some reason there are other beans of this type declared,
this one takes precedence over the others.

 For the most part, this is a boilerplate configuration. If you want, feel free to dive
in a little deeper and customize the configuration. For now, we’re just going to go with
the defaults.

 One component that isn’t boilerplate, and thus not provided by OAuth2-
AuthorizationServerConfiguration, is the client repository. A client repository is
analogous to a user details service or user repository, except that instead of main-
taining details about users, it maintains details about clients that might be asking for
authorization on behalf of users. It is defined by the RegisteredClientRepository
interface, which looks like this:

public interface RegisteredClientRepository {

 @Nullable
 RegisteredClient findById(String id);

 @Nullable
 RegisteredClient findByClientId(String clientId);

}

In a production setting, you might write a custom implementations of Registered-
ClientRepository to retrieve client details from a database or from some other source.
But out of the box, Spring Authorization Server offers an in-memory implementation
that is perfect for demonstration and testing purposes. You’re encouraged to imple-
ment RegisteredClientRepository however you see fit. But for our purposes, we’ll use
the in-memory implementation to register a single client with the authorization server.
Add the following bean method to AuthorizationServerConfig:

@Bean
public RegisteredClientRepository registeredClientRepository(
 PasswordEncoder passwordEncoder) {
 RegisteredClient registeredClient =
 RegisteredClient.withId(UUID.randomUUID().toString())
 .clientId("taco-admin-client")
 .clientSecret(passwordEncoder.encode("secret"))
 .clientAuthenticationMethod(
 ClientAuthenticationMethod.CLIENT_SECRET_BASIC)
 .authorizationGrantType(AuthorizationGrantType.AUTHORIZATION_CODE)
 .authorizationGrantType(AuthorizationGrantType.REFRESH_TOKEN)

196 CHAPTER 8 Securing REST
 .redirectUri(
 "http:/ /127.0.0.1:9090/login/oauth2/code/taco-admin-client")
 .scope("writeIngredients")
 .scope("deleteIngredients")
 .scope(OidcScopes.OPENID)
 .clientSettings(
 clientSettings -> clientSettings.requireUserConsent(true))
 .build();
 return new InMemoryRegisteredClientRepository(registeredClient);
}

As you can see, there are a lot of details that go into a RegisteredClient. But going
from top to bottom, here’s how our client is defined:

 ID—A random, unique identifier.
 Client ID—Analogous to a username, but instead of a user, it is a client. In this

case, "taco-admin-client".
 Client secret—Analogous to a password for the client. Here we’re using the word

"secret" for the client secret.
 Authorization grant type—The OAuth 2 grant types that this client will support.

In this case, we’re enabling authorization code and refresh token grants.
 Redirect URL—One or more registered URLs that the authorization server can

redirect to after authorization has been granted. This adds another level of
security, preventing some arbitrary application from receiving an authorization
code that it could exchange for a token.

 Scope—One or more OAuth 2 scopes that this client is allowed to ask for. Here
we are setting three scopes: "writeIngredients", "deleteIngredients", and
the constant OidcScopes.OPENID, which resolves to "openid". The "openid"
scope will be necessary later when we use the authorization server as a single-
sign-on solution for the Taco Cloud admin application.

 Client settings—This is a lambda that allows us to customize the client settings.
In this case, we’re requiring explicit user consent before granting the
requested scope. Without this, the scope would be implicitly granted after the
user logs in.

Finally, because our authorization server will be producing JWT tokens, the tokens
will need to include a signature created using a JSON Web Key (JWK)3 as the signing
key. Therefore, we’ll need a few beans to produce a JWK. Add the following bean
method (and private helper methods) to AuthorizationServerConfig to handle
that for us:

@Bean
 public JWKSource<SecurityContext> jwkSource()
 throws NoSuchAlgorithmException {

3 See https://datatracker.ietf.org/doc/html/rfc7517.

https://datatracker.ietf.org/doc/html/rfc7517

197Creating an authorization server
 RSAKey rsaKey = generateRsa();
 JWKSet jwkSet = new JWKSet(rsaKey);
 return (jwkSelector, securityContext) -> jwkSelector.select(jwkSet);
 }

 private static RSAKey generateRsa() throws NoSuchAlgorithmException {
 KeyPair keyPair = generateRsaKey();
 RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic();
 RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate();
 return new RSAKey.Builder(publicKey)
 .privateKey(privateKey)
 .keyID(UUID.randomUUID().toString())
 .build();
 }

 private static KeyPair generateRsaKey() throws NoSuchAlgorithmException {
 KeyPairGenerator keyPairGenerator =

KeyPairGenerator.getInstance("RSA");
 keyPairGenerator.initialize(2048);
 return keyPairGenerator.generateKeyPair();
 }

 @Bean
 public JwtDecoder jwtDecoder(JWKSource<SecurityContext> jwkSource) {
 return OAuth2AuthorizationServerConfiguration.jwtDecoder(jwkSource);
 }

There appears to be a lot going on here. But to summarize, the JWKSource creates
RSA 2048-bit key pairs that will be used to sign the token. The token will be signed
using the private key. The resource server can then verify that the token received in a
request is valid by obtaining the public key from the authorization server. We’ll talk
more about that when we create the resource server.

 All of the pieces of our authorization server are now in place. All that’s left to do is
start it up and try it out. Build and run the application, and you should have an autho-
rization server listening on port 9000.

 Because we don’t have a client yet, you can pretend to be a client using your web
browser and the curl command-line tool. Start by pointing your web browser at http:/ /
localhost:9000/oauth2/authorize?response_type=code&client_id=tacoadmin-client&
redirect_uri=http://127.0.0.1:9090/login/oauth2/code/taco-admin-client&-scope=write
Ingredients+deleteIngredients.4 You should see a login page that looks like figure 8.2.

4 Notice that this and all URLs in this chapter are using “http://” URLs. This makes local development and test-
ing easy. But in a production setting, you should always use “https://” URLs for increased security.

198 CHAPTER 8 Securing REST
After logging in (with “tacochef” and “password,” or some username-password combi-
nation in the database under TacoUserRepository), you’ll be asked to consent to the
requested scopes on a page that looks like figure 8.3.

 After granting consent, the browser will be redirected back to the client URL. We
don’t have a client yet, so there’s probably nothing there and you’ll receive an error.
But that’s OK—we’re pretending to be the client, so we’ll obtain the authorization
code from the URL ourselves.

 Look in the browser’s address bar, and you’ll see that the URL has a code parame-
ter. Copy the entire value of that parameter, and use it in the following curl command
line in place of $code:

$ curl localhost:9000/oauth2/token \
 -H"Content-type: application/x-www-form-urlencoded" \
 -d"grant_type=authorization_code" \
 -d"redirect_uri=http:/ /127.0.0.1:9090/login/oauth2/code/taco-admin-

client" \
 -d"code=$code" \
 -u taco-admin-client:secret

Here we’re exchanging the authorization code we received for an access token. The
payload body is in “application/x-www-form-urlencoded” format and sends the grant
type ("authorization_code"), the redirect URI (for additional security), and the

Figure 8.2 The authorization server login page

199Creating an authorization server
authorization code itself. If all goes well, then you’ll receive a JSON response that
(when formatted) looks like this:

{
 "access_token":"eyJraWQ...",
 "refresh_token":"HOzHA5s...",
 "scope":"deleteIngredients writeIngredients",
 "token_type":"Bearer",
 "expires_in":"299"
}

The "access_token" property contains the access token that a client can use to make
requests to the API. In reality, it is much longer than shown here. Likewise, the
"refresh_token" has been abbreviated here to save space. But the access token can
now be sent on requests to the resource server to gain access to resources requiring
either the "writeIngredients" or "deleteIngredients" scope. The access token will
expire in 299 seconds (or just less than 5 minutes), so we’ll have to move quickly if

Figure 8.3 The authorization server consent page

200 CHAPTER 8 Securing REST
we’re going to use it. But if it expires, then we can use the refresh token to obtain a
new access token without going through the authorization flow all over again.

 So, how can we use the access token? Presumably, we’ll send it in a request to the
Taco Cloud API as part of the "Authorization" header—perhaps something like this:

$ curl localhost:8080/ingredients \
 -H"Content-type: application/json" \
 -H"Authorization: Bearer eyJraWQ..." \
 -d'{"id":"FISH","name":"Stinky Fish", "type":"PROTEIN"}'

At this point, the token achieves nothing for us. That’s because our Taco Cloud API
hasn’t been enabled to be a resource server yet. But in lieu of an actual resource
server and client API, we can still inspect the access token by copying it and pasting
into the form at https://jwt.io. The result will look something like figure 8.4.

Figure 8.4 Decoding a JWT token at jwt.io

https://jwt.io

201Securing an API with a resource server
As you can see, the token is decoded into three parts: the header, the payload, and the
signature. A closer look at the payload shows that this token was issued on behalf of
the user named tacochef and the token has the "writeIngredients" and "delete-
Ingredients" scopes. Just what we asked for!

 After about 5 minutes, the access token will expire. You can still inspect it in the
debugger at https://jwti.io, but if it were given in a real request to an API, it would be
rejected. But you can request a new access token without going through the authoriza-
tion code grant flow again. All you need to do is make a new request to the authori-
zation server using the "refresh_token" grant and passing the refresh token as the
value of the "refresh_token" parameter. Using curl, such a request will look like this:

$ curl localhost:9000/oauth2/token \
 -H"Content-type: application/x-www-form-urlencoded" \
 -d"grant_type=refresh_token&refresh_token=HOzHA5s..." \
 -u taco-admin-client:secret

The response to this request will be the same as the response from the request that
exchanged the authorization code for an access token initially, only with a fresh
new access token.

 Although it’s fun to paste access tokens into https://jwt.io, the real power and pur-
pose of the access token is to gain access to an API. So let’s see how to enable a
resource server on the Taco Cloud API.

8.3 Securing an API with a resource server
The resource server is actually just a filter that sits in front of an API, ensuring that
requests for resources that require authorization include a valid access token with the
required scope. Spring Security provides an OAuth2 resource server implementation
that you can add to an existing API by adding the following dependency to the build
for the project build as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
</dependency>

You can also add the resource server dependency by selecting the “OAuth2 Resource
Server” dependency from the Initializr when creating a project.

 With the dependency in place, the next step is to declare that POST requests
to /ingredients require the "writeIngredients" scope and that DELETE requests to
/ingredients require the "deleteIngredients" scope. The following excerpt from
the project’s SecurityConfig class shows how to do that:

@Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 ...

https://jwti.io
https://jwt.io

202 CHAPTER 8 Securing REST
 .antMatchers(HttpMethod.POST, "/api/ingredients")
 .hasAuthority("SCOPE_writeIngredients")
 .antMatchers(HttpMethod.DELETE, "/api/ /ingredients")
 .hasAuthority("SCOPE_deleteIngredients")
 ...
 }

For each of the endpoints, the .hasAuthority() method is called to specify the
required scope. Notice that the scopes are prefixed with "SCOPE_" to indicate that
they should be matched against OAuth 2 scopes in the access token given on the
request to those resources.

 In that same configuration class, we’ll also need to enable the resource server, as
shown next:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .oauth2ResourceServer(oauth2 -> oauth2.jwt())
 ...
}

The oauth2ResourceServer() method here is given a lambda with which to configure
the resource server. Here, it simply enables JWT tokens (as opposed to opaque tokens) so
that the resource server can inspect the contents of the token to find what security
claims it includes. Specifically, it will look to see that the token includes the "write-
Ingredients" and/or "deleteIngredients" scope for the two endpoints we’ve secured.

 It won’t trust the token at face value, though. To be confident that the token was
created by a trusted authorization server on behalf of a user, it will verify the token’s
signature using the public key that matches the private key that was used to create the
token’s signature. We’ll need to configure the resource server to know where to
obtain the public key, though. The following property will specify the JWK set URL on
the authorization server from which the resource server will fetch the public key:

spring:
 security:
 oauth2:
 resourceserver:
 jwt:
 jwk-set-uri: http:/ /localhost:9000/oauth2/jwks

And now our resource server is ready! Build the Taco Cloud application and start it
up. Then you can try it out using curl like this:

$ curl localhost:8080/ingredients \
 -H"Content-type: application/json" \
 -d'{"id":"CRKT", "name":"Legless Crickets", "type":"PROTEIN"}'

203Securing an API with a resource server
The request should fail with an HTTP 401 response code. That’s because we’ve con-
figured the endpoint to require the "writeIngredients" scope for that endpoint,
and we’ve not provided a valid access token with that scope on the request.

 To make a successful request and add a new ingredient item, you’ll need to obtain
an access token using the flow we used in the previous section, making sure that we
request the "writeIngredients" and "deleteIngredients" scopes when directing the
browser to the authorization server. Then, provide the access token in the "Authoriza-
tion" header using curl like this (substituting "$token" for the actual access token):

$ curl localhost:8080/ingredients \
 -H"Content-type: application/json" \
 -d'{"id":"SHMP", "name":"Coconut Shrimp", "type":"PROTEIN"}' \
 -H"Authorization: Bearer $token"

This time the new ingredient should be created. You can verify that by using curl or your
chosen HTTP client to perform a GET request to the /ingredients endpoint as follows:

$ curl localhost:8080/ingredients
[
 {
 "id": "FLTO",
 "name": "Flour Tortilla",
 "type": "WRAP"
 },

 ...

 {
 "id": "SHMP",
 "name": "Coconut Shrimp",
 "type": "PROTEIN"
 }
]

Coconut Shrimp is now included at the end of the list of all of the ingredients
returned from the /ingredients endpoint. Success!

 Recall that the access token expires after 5 minutes. If you let the token expire,
requests will start returning HTTP 401 responses again. But you can get a new access
token by making a request to the authorization server using the refresh token that you
got along with the access token (substituting the actual refresh token for "$refresh-
Token"), as shown here:

$ curl localhost:9000/oauth2/token \
 -H"Content-type: application/x-www-form-urlencoded" \
 -d"grant_type=refresh_token&refresh_token=$refreshToken" \
 -u taco-admin-client:secret

With a newly created access token, you can keep on creating new ingredients to your
heart’s content.

204 CHAPTER 8 Securing REST
 Now that we’ve secured the /ingredients endpoint, it’s probably a good idea to
apply the same techniques to secure other potentially sensitive endpoints in our API.
The /orders endpoint, for example, should probably not be open for any kind of
request, even HTTP GET requests, because it would allow a hacker to easily grab cus-
tomer information. I’ll leave it up to you to secure the /orders endpoint and the rest
of the API as you see fit.

 Administering the Taco Cloud application using curl works great for tinkering
and getting to know how OAuth 2 tokens play a part in allowing access to a resource.
But ultimately we want a real client application that can be used to manage ingredi-
ents. Let’s now turn our attention to creating an OAuth-enabled client that will obtain
access tokens and make requests to the API.

8.4 Developing the client
In the OAuth 2 authorization dance, the client application’s role is to obtain an access
token and make requests to the resource server on behalf of the user. Because we’re
using OAuth 2’s authorization code flow, that means that when the client application
determines that the user has not yet been authenticated, it should redirect the user’s
browser to the authorization server to get consent from the user. Then, when the autho-
rization server redirects control back to the client, the client must exchange the
authorization code it receives for the access token.

 First things first: the client will need Spring Security’s OAuth 2 client support in its
classpath. The following starter dependency makes that happen:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-client</artifactId>
</dependency>

Not only does this give the application OAuth 2 client capabilities that we’ll exploit in
a moment, but it also transitively brings in Spring Security itself. This enables us to
write some security configuration for the application. The following SecurityFilter-
Chain bean sets up Spring Security so that all requests require authentication:

@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws

Exception {
 http
 .authorizeRequests(
 authorizeRequests -> authorizeRequests.anyRequest().authenticated()
)
 .oauth2Login(
 oauth2Login ->
 oauth2Login.loginPage("/oauth2/authorization/taco-admin-client"))
 .oauth2Client(withDefaults());
 return http.build();
}

205Developing the client
What’s more, this SecurityFilterChain bean also enables the client-side bits of
OAuth 2. Specifically, it sets up a login page at the path /oauth2/authorization/taco-
admin-client. But this is no ordinary login page that takes a username and password.
Instead, it accepts an authorization code, exchanges it for an access token, and uses
the access token to determine the identity of the user. Put another way, this is the path
that the authorization server will redirect to after the user has granted permission.

 We also need to configure details about the authorization server and our applica-
tion’s OAuth 2 client details. That is done in configuration properties, such as in the
following application.yml file, which configures a client named taco-admin-client:

spring:
 security:
 oauth2:
 client:
 registration:
 taco-admin-client:
 provider: tacocloud
 client-id: taco-admin-client
 client-secret: secret
 authorization-grant-type: authorization_code
 redirect-uri:
 ➥ "http:/ /127.0.0.1:9090/login/oauth2/code/{registrationId}"
 scope: writeIngredients,deleteIngredients,openid

This registers a client with the Spring Security OAuth 2 client named taco-admin-
client. The registration details include the client’s credentials (client-id and client-
secret), the grant type (authorization-grant-type), the scopes being requested
(scope), and the redirect URI (redirect-uri). Notice that the value given to redirect-
uri has a placeholder that references the client’s registration ID, which is taco-
admin-client. Consequently, the redirect URI is set to http://127.0.0.1:9090/login/
oauth2/code/taco-admin-client, which has the same path that we configured as the
OAuth 2 login earlier.

 But what about the authorization server itself? Where do we tell the client that it
should redirect the user’s browser? That’s what the provider property does, albeit indi-
rectly. The provider property is set to tacocloud, which is a reference to a separate set
of configuration that describes the tacocloud provider’s authorization server. That pro-
vider configuration is configured in the same application.yml file like this:

spring:
 security:
 oauth2:
 client:
...
 provider:
 tacocloud:
 issuer-uri: http:/ /authserver:9000

The only property required for a provider configuration is issuer-uri. This property
identifies the base URI for the authorization server. In this case, it refers to a server

http://127.0.0.1:9090/login/oauth2/code/taco-admin-client
http://127.0.0.1:9090/login/oauth2/code/taco-admin-client
http://127.0.0.1:9090/login/oauth2/code/taco-admin-client

206 CHAPTER 8 Securing REST
host whose name is authserver. Assuming that you are running these examples
locally, this is just another alias for localhost. On most Unix-based operating systems,
this can be added in your /etc/hosts file with the following line:

127.0.0.1 authserver

Refer to documentation for your operating system for details on how to create custom
host entries if /etc/hosts isn’t what works on your machine.

 Building on the base URL, Spring Security’s OAuth 2 client will assume reasonable
defaults for the authorization URL, token URL, and other authorization server specif-
ics. But, if for some reason the authorization server you’re working with differs from
those default values, you can explicitly configure authorization details like this:

spring:
 security:
 oauth2:
 client:
 provider:
 tacocloud:
 issuer-uri: http:/ /authserver:9000
 authorization-uri: http:/ /authserver:9000/oauth2/authorize
 token-uri: http:/ /authserver:9000/oauth2/token
 jwk-set-uri: http:/ /authserver:9000/oauth2/jwks
 user-info-uri: http:/ /authserver:9000/userinfo
 user-name-attribute: sub

We’ve seen most of these URIs, such as the authorization, token, and JWK Set URIs
already. The user-info-uri property is new, however. This URI is used by the client
to obtain essential user information, most notably the user’s username. A request to
that URI should return a JSON response that includes the property specified in user-
name-attribute to identify the user. Note, however, when using Spring Authorization
Server, you do not need to create the endpoint for that URI; Spring Authorization
Server will expose the user-info endpoint automatically.

 Now all of the pieces are in place for the application to authenticate and obtain an
access token from the authorization server. Without doing anything more, you could fire
up the application, make a request to any URL on that application, and be redirected to
the authorization server for authorization. When the authorization server redirects back,
then the inner workings of Spring Security’s OAuth 2 client library will exchange the
code it receives in the redirect for an access token. Now, how can we use that token?

 Let’s suppose that we have a service bean that interacts with the Taco Cloud API
using RestTemplate. The following RestIngredientService implementation shows
such a class that offers two methods: one for fetching a list of ingredients and another
for saving a new ingredient:

package tacos;

import java.util.Arrays;
import org.springframework.web.client.RestTemplate;

207Developing the client
public class RestIngredientService implements IngredientService {

 private RestTemplate restTemplate;

 public RestIngredientService() {
 this.restTemplate = new RestTemplate();
 }

 @Override
 public Iterable<Ingredient> findAll() {
 return Arrays.asList(restTemplate.getForObject(
 "http:/ /localhost:8080/api/ingredients",
 Ingredient[].class));
 }

 @Override
 public Ingredient addIngredient(Ingredient ingredient) {
 return restTemplate.postForObject(
 "http:/ /localhost:8080/api/ingredients",
 ingredient,
 Ingredient.class);
 }

}

The HTTP GET request for the /ingredients endpoint isn’t secured, so the findAll()
method should work fine, as long as the Taco Cloud API is listening on localhost,
port 8080. But the addIngredient() method is likely to fail with an HTTP 401
response because we’ve secured POST requests to /ingredients to require "write-
Ingredients" scope. The only way around that is to submit an access token with
"writeIngredients" scope in the request’s Authorization header.

 Fortunately, Spring Security’s OAuth 2 client should have the access token handy
after completing the authorization code flow. All we need to do is make sure that the
access token ends up in the request. To do that, let’s change the constructor to attach
a request interceptor to the RestTemplate it creates as follows:

public RestIngredientService(String accessToken) {
 this.restTemplate = new RestTemplate();
 if (accessToken != null) {
 this.restTemplate
 .getInterceptors()
 .add(getBearerTokenInterceptor(accessToken));
 }
 }
 private ClientHttpRequestInterceptor
 getBearerTokenInterceptor(String accessToken) {
 ClientHttpRequestInterceptor interceptor =
 new ClientHttpRequestInterceptor() {
 @Override
 public ClientHttpResponse intercept(
 HttpRequest request, byte[] bytes,
 ClientHttpRequestExecution execution) throws IOException {

208 CHAPTER 8 Securing REST
 request.getHeaders().add("Authorization", "Bearer " + accessToken);
 return execution.execute(request, bytes);
 }
 };

 return interceptor;
 }

The constructor now takes a String parameter that is the access token. Using this
token, it attaches a client request interceptor that adds the Authorization header to
every request made by the RestTemplate such that the header’s value is "Bearer" fol-
lowed by the token value. In the interest of keeping the constructor tidy, the client
interceptor is created in a separate private helper method.

 Only one question remains: where does the access token come from? The follow-
ing bean method is where the magic happens:

@Bean
@RequestScope
public IngredientService ingredientService(
 OAuth2AuthorizedClientService clientService) {
 Authentication authentication =
 SecurityContextHolder.getContext().getAuthentication();

 String accessToken = null;

 if (authentication.getClass()
 .isAssignableFrom(OAuth2AuthenticationToken.class)) {
 OAuth2AuthenticationToken oauthToken =
 (OAuth2AuthenticationToken) authentication;
 String clientRegistrationId =
 oauthToken.getAuthorizedClientRegistrationId();
 if (clientRegistrationId.equals("taco-admin-client")) {
 OAuth2AuthorizedClient client =
 clientService.loadAuthorizedClient(
 clientRegistrationId, oauthToken.getName());
 accessToken = client.getAccessToken().getTokenValue();
 }
 }
 return new RestIngredientService(accessToken);
}

To start, notice that the bean is declared to be request-scoped using the @Request-
Scope annotation. This means that a new instance of the bean will be created on every
request. The bean must be request-scoped because it needs to pull the authentication
from the SecurityContext, which is populated on every request by one of Spring
Security’s filters; there is no SecurityContext at application startup time when
default-scoped beans are created.

 Before returning a RestIngredientService instance, the bean method checks to
see that the authentication is, in fact, implemented as OAuth2AuthenticationToken. If
so, then that means it will have the token. It then verifies that the authentication token

209Summary
is for the client named taco-admin-client. If so, then it extracts the token from the
authorized client and passes it through the constructor for RestIngredientService.
With that token in hand, RestIngredientService will have no trouble making requests
to the Taco Cloud API’s endpoints on behalf of the user who authorized the application.

Summary
 OAuth 2 security is a common way to secure APIs that is more robust than sim-

ple HTTP Basic authentication.
 An authorization server issues access tokens for a client to act on behalf of a

user when making requests to an API (or on its own behalf in the case of cli-
ent token flow).

 A resource server sits in front of an API to verify that valid, nonexpired tokens
are presented with the scope necessary to access API resources.

 Spring Authorization Server is an experimental project that implements an
OAuth 2 authorization server.

 Spring Security provides support for creating a resource server, as well as creat-
ing clients that obtain access tokens from the authorization server and pass
those tokens when making requests through the resource server.

Sending messages
asynchronously
It’s 4:55 p.m. on Friday. You’re minutes away from starting a much-anticipated vaca-
tion. You have just enough time to drive to the airport and catch your flight. But
before you pack up and head out, you need to be sure your boss and colleagues
know the status of the work you’ve been doing so that on Monday they can pick up
where you left off. Unfortunately, some of your colleagues have already skipped out
for the weekend, and your boss is tied up in a meeting. What do you do?

 The most practical way to communicate your status and still catch your plane is
to send a quick email to your boss and your colleagues, detailing your progress and
promising to send a postcard. You don’t know where they are or when they’ll read
the email, but you do know they’ll eventually return to their desks and read it.
Meanwhile, you’re on your way to the airport.

This chapter covers
 Asynchronous messaging

 Sending messages with JMS, RabbitMQ,
and Kafka

 Pulling messages from a broker

 Listening for messages
210

211Sending messages with JMS
 Synchronous communication, which is what we’ve seen with REST, has its place. But
it’s not the only style of interapplication communication available to developers. Asyn-
chronous messaging is a way of indirectly sending messages from one application to
another without waiting for a response. This indirection affords looser coupling and
greater scalability between the communicating applications.

 In this chapter, we’re going to use asynchronous messaging to send orders from
the Taco Cloud website to a separate application in the Taco Cloud kitchens where
the tacos will be prepared. We’ll consider three options that Spring offers for asyn-
chronous messaging: the Java Message Service (JMS), RabbitMQ and Advanced Mes-
sage Queueing Protocol (AMQP), and Apache Kafka. In addition to the basic sending
and receiving of messages, we’ll look at Spring’s support for message-driven POJOs: a
way to receive messages that resembles Enterprise JavaBeans’ message-driven beans
(MDBs).

9.1 Sending messages with JMS
JMS is a Java standard that defines a common API for working with message brokers.
First introduced in 2001, JMS has been the go-to approach for asynchronous messag-
ing in Java for a very long time. Before JMS, each message broker had a proprietary
API, making an application’s messaging code less portable between brokers. But with
JMS, all compliant implementations can be worked with via a common interface in
much the same way that JDBC has given relational database operations a common
interface.

 Spring supports JMS through a template-based abstraction known as JmsTemplate.
Using JmsTemplate, it’s easy to send messages across queues and topics from the pro-
ducer side and to receive those messages on the consumer side. Spring also supports
the notion of message-driven POJOs: simple Java objects that react to messages arriv-
ing on a queue or topic in an asynchronous fashion.

 We’re going to explore Spring’s JMS support, including JmsTemplate and message-
driven POJOs. Our focus will be on Spring’s support for messaging with JMS, but if
you want to know more about JMS, then have a look at ActiveMQ in Action by Bruce
Snyder, Dejan Bosanac, and Rob Davies (Manning, 2011).

 Before you can send and receive messages, you need a message broker that’s ready
to relay those messages between producers and consumers. Let’s kick off our explora-
tion of Spring JMS by setting up a message broker in Spring.

9.1.1 Setting up JMS

Before you can use JMS, you must add a JMS client to your project’s build. With
Spring Boot, that couldn’t be any easier. All you need to do is add a starter depen-
dency to the build. First, though, you must decide whether you’re going to use
Apache ActiveMQ, or the newer Apache ActiveMQ Artemis broker.

 If you’re using ActiveMQ, you’ll need to add the following dependency to your
project’s pom.xml file:

212 CHAPTER 9 Sending messages asynchronously
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-activemq</artifactId>
</dependency>

If ActiveMQ Artemis is the choice, the starter dependency should look like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-artemis</artifactId>
</dependency>

When using the Spring Initializr (or your IDE’s frontend for the Initializr), you can
also select either of these options as starter dependencies for your project. They are
listed as “Spring for Apache ActiveMQ 5” and “Spring for Apache ActiveMQ Artemis,”
as shown in the screenshot in figure 9.1 from https://start.spring.io.

Artemis is a next-generation reimplementation of ActiveMQ, effectively making
ActiveMQ a legacy option. Therefore, for Taco Cloud you’re going to choose Artemis.
But the choice ultimately has little impact on how you’ll write the code that sends and
receives messages. The only significant differences will be in how you configure
Spring to create connections to the broker.

RUNNING AN ARTEMIS BROKER You’ll need an Artemis broker running to be
able to run the code presented in this chapter. If you don’t already have an
Artemis instance running, you can following the instructions from the Arte-
mis documentation at http://mng.bz/Xr81.

By default, Spring assumes that your Artemis broker is listening on localhost at port
61616. That’s fine for development purposes, but once you’re ready to send your
application into production, you’ll need to set a few properties that tell Spring how to
access the broker. The properties you’ll find most useful are listed in table 9.1.

Figure 9.1 ActiveMQ and Artemis choices available in the Spring Initializr

https://start.spring.io
http://mng.bz/Xr81

213Sending messages with JMS
For example, consider the following entry from an application.yml file that might be
used in a nondevelopment setting:

spring:
 artemis:
 host: artemis.tacocloud.com
 port: 61617
 user: tacoweb
 password: l3tm31n

This sets up Spring to create broker connections to an Artemis broker listening at
artemis.tacocloud.com, port 61617. It also sets the credentials for the application that
will be interacting with that broker. The credentials are optional, but they’re recom-
mended for production deployments.

 If you were to use ActiveMQ instead of Artemis, you’d need to use the ActiveMQ-
specific properties listed in table 9.2.

Notice that instead of offering separate properties for the broker’s hostname and
port, an ActiveMQ broker’s address is specified with a single property, spring
.activemq.broker-url. The URL should be a tcp:// URL, as shown in the following
YAML snippet:

spring:
 activemq:
 broker-url: tcp:/ /activemq.tacocloud.com
 user: tacoweb
 password: l3tm31n

Table 9.1 Properties for configuring the location and credentials of an Artemis broker

Property Description

spring.artemis.host The broker’s host

spring.artemis.port The broker’s port

spring.artemis.user The user for accessing the broker (optional)

spring.artemis.password The password for accessing the broker (optional)

Table 9.2 Properties for configuring the location and credentials of an ActiveMQ broker

Property Description

spring.activemq.broker-url The URL of the broker

spring.activemq.user The user for accessing the broker (optional)

spring.activemq.password The password for accessing the broker (optional)

spring.activemq.in-memory Whether to start an in-memory broker (default: true)

214 CHAPTER 9 Sending messages asynchronously
Whether you choose Artemis or ActiveMQ, you shouldn’t need to configure these
properties for development when the broker is running locally.

 If you’re using ActiveMQ, you will, however, need to set the spring.activemq.in-
memory property to false to prevent Spring from starting an in-memory broker. An in-
memory broker may seem useful, but it’s helpful only when you’ll be consuming mes-
sages from the same application that publishes them (which has limited usefulness).

 Instead of using an embedded broker, you’ll want to install and start an Artemis
(or ActiveMQ) broker before moving on. Rather than repeat the installation instruc-
tions here, I refer you to the broker documentation for details:

 Artemis—http://mng.bz/yJOo
 ActiveMQ—http://mng.bz/MveD

With the JMS starter in your build and a broker waiting to ferry messages from one
application to another, you’re ready to start sending messages.

9.1.2 Sending messages with JmsTemplate

With a JMS starter dependency (either Artemis or ActiveMQ) in your build, Spring
Boot will autoconfigure a JmsTemplate (among other things) that you can inject and
use to send and receive messages.

 JmsTemplate is the centerpiece of Spring’s JMS integration support. Much like
Spring’s other template-oriented components, JmsTemplate eliminates a lot of boiler-
plate code that would otherwise be required to work with JMS. Without JmsTemplate,
you’d need to write code to create a connection and session with the message broker
and more code to deal with any exceptions that might be thrown in the course of send-
ing a message. JmsTemplate focuses on what you really want to do: send a message.

 JmsTemplate has several methods that are useful for sending messages, including
the following:

// Send raw messages
void send(MessageCreator messageCreator) throws JmsException;
void send(Destination destination, MessageCreator messageCreator)
 throws JmsException;
void send(String destinationName, MessageCreator messageCreator)
 throws JmsException;
// Send messages converted from objects
void convertAndSend(Object message) throws JmsException;
void convertAndSend(Destination destination, Object message)
 throws JmsException;
void convertAndSend(String destinationName, Object message)
 throws JmsException;

// Send messages converted from objects with post-processing
void convertAndSend(Object message,
 MessagePostProcessor postProcessor) throws JmsException;
void convertAndSend(Destination destination, Object message,
 MessagePostProcessor postProcessor) throws JmsException;
void convertAndSend(String destinationName, Object message,
 MessagePostProcessor postProcessor) throws JmsException;

http://mng.bz/yJOo
http://mng.bz/MveD

215Sending messages with JMS
As you can see, there are really only two methods, send() and convertAndSend(),
each overridden to support different parameters. And if you look closer, you’ll notice
that the various forms of convertAndSend() can be broken into two subcategories. In
trying to understand what all of these methods do, consider the following breakdown:

 Three send() methods require a MessageCreator to manufacture a Message
object.

 Three convertAndSend() methods accept an Object and automatically convert
that Object into a Message behind the scenes.

 Three convertAndSend() methods automatically convert an Object to a Message
but also accept a MessagePostProcessor to allow for customization of the
Message before it’s sent.

Moreover, each of these three method categories is composed of three overriding
methods that are distinguished by how the JMS destination (queue or topic) is speci-
fied, as follows:

 One method accepts no destination parameter and sends the message to a
default destination.

 One method accepts a Destination object that specifies the destination for the
message.

 One method accepts a String that specifies the destination for the message
by name.

Putting these methods to work, consider JmsOrderMessagingService in the next list-
ing, which uses the most basic form of the send() method.

package tacos.messaging;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;
import org.springframework.stereotype.Service;

@Service
public class JmsOrderMessagingService implements OrderMessagingService {
 private JmsTemplate jms;

 @Autowired
 public JmsOrderMessagingService(JmsTemplate jms) {
 this.jms = jms;
 }

 @Override
 public void sendOrder(TacoOrder order) {

Listing 9.1 Sending an order with .send() to a default destination

216 CHAPTER 9 Sending messages asynchronously
 jms.send(new MessageCreator() {
 @Override
 public Message createMessage(Session session)
 throws JMSException {
 return session.createObjectMessage(order);
 }
 }
);
 }
}

The sendOrder() method calls jms.send(), passing in an anonymous inner-class imple-
mentation of MessageCreator. That implementation overrides createMessage() to cre-
ate a new object message from the given TacoOrder object.

 Because the JMS-specific JmsOrderMessagingService implements the more generic
OrderMessagingService interface, we can put this service to work by injecting it into
the OrderApiController and calling sendOrder() when an order is created, as shown
here:

@RestController
@RequestMapping(path="/api/orders",
 produces="application/json")
@CrossOrigin(origins="http:/ /localhost:8080")
public class OrderApiController {

 private OrderRepository repo;
 private OrderMessagingService messageService;

 public OrderApiController(
 OrderRepository repo,
 OrderMessagingService messageService) {
 this.repo = repo;
 this.messageService = messageService;
 }

 @PostMapping(consumes="application/json")
 @ResponseStatus(HttpStatus.CREATED)
 public TacoOrder postOrder(@RequestBody TacoOrder order) {
 messageService.sendOrder(order);
 return repo.save(order);
 }

 ...

}

Now when you create an order through the Taco Cloud website, a message should be
sent to the broker for routing to another application that will receive the order. We
don’t yet have anything to receive that message, though. Even so, you can use the
Artemis console to view the contents of the queue. See the Artemis documentation at
http://mng.bz/aZx9 for details on how to do this.

http://mng.bz/aZx9

217Sending messages with JMS
 I’m not sure about you, but I think the code in listing 9.1, although straightfor-
ward, is a bit clumsy. The ceremony involved in declaring an anonymous inner class
complicates an otherwise simple method call. Recognizing that MessageCreator is a
functional interface, you can tidy up the sendOrder() method a bit with a lambda, as
shown next:

@Override
public void sendOrder(TacoOrder order) {
 jms.send(session -> session.createObjectMessage(order));
}

But notice that the call to jms.send() doesn’t specify a destination. For this to work,
you must also specify a default destination name with the spring.jms.template
.default-destination property. For example, you could set the property in your
application.yml file like this:

spring:
 jms:
 template:
 default-destination: tacocloud.order.queue

In many cases, using a default destination is the easiest choice. It lets you specify the
destination name once, allowing the code to be concerned only with sending mes-
sages, without regard for where they’re being sent. But if you ever need to send a mes-
sage to a destination other than the default destination, you’ll need to specify that
destination as a parameter to send().

 One way of doing that is by passing a Destination object as the first parameter to
send(). The easiest way to do this is to declare a Destination bean and then inject it
into the bean that performs messaging. For example, the following bean declares the
Taco Cloud order queue Destination:

@Bean
public Destination orderQueue() {
 return new ActiveMQQueue("tacocloud.order.queue");
}

This bean method can be added to any configuration class in the application that will
be sending or receiving messages via JMS. For the sake of organization, it’s best to add
it to a configuration class designated for messaging configuration, such as Messaging-
Config.

 It’s important to note that the ActiveMQQueue used here is actually from Artemis
(from the org.apache.activemq.artemis.jms.client package). If you’re using
ActiveMQ (not Artemis), there’s also a class named ActiveMQQueue (from the
org.apache.activemq.command package).

 If this Destination bean is injected into JmsOrderMessagingService, you can use
it to specify the destination when calling send() as follows:

218 CHAPTER 9 Sending messages asynchronously
private Destination orderQueue;

@Autowired
public JmsOrderMessagingService(JmsTemplate jms,
 Destination orderQueue) {
 this.jms = jms;
 this.orderQueue = orderQueue;
}

...

@Override
public void sendOrder(TacoOrder order) {
 jms.send(
 orderQueue,
 session -> session.createObjectMessage(order));
}

Specifying the destination with a Destination object like this affords you the opportu-
nity to configure the Destination with more than just the destination name. But in
practice, you’ll almost never specify anything more than the destination name. It’s
often easier to just send the name as the first parameter to send(), as shown here:

@Override
public void sendOrder(TacoOrder order) {
 jms.send(
 "tacocloud.order.queue",
 session -> session.createObjectMessage(order));
}

Although the send() method isn’t particularly difficult to use (especially when the
MessageCreator is given as a lambda), a sliver of complexity is added by requiring
that you provide a MessageCreator. Wouldn’t it be simpler if you needed to specify
only the object that’s to be sent (and optionally the destination)? That describes suc-
cinctly how convertAndSend() works. Let’s take a look.

CONVERTING MESSAGES BEFORE SENDING

The JmsTemplatesconvertAndSend() method simplifies message publication by elim-
inating the need to provide a MessageCreator. Instead, you pass the object that’s to be
sent directly to convertAndSend(), and the object will be converted into a Message
before being sent.

 For example, the following reimplementation of sendOrder() uses convertAnd-
Send() to send a TacoOrder to a named destination:

@Override
public void sendOrder(TacoOrder order) {
 jms.convertAndSend("tacocloud.order.queue", order);
}

219Sending messages with JMS
Just like the send() method, convertAndSend() will accept either a Destination or
String value to specify the destination, or you can leave out the destination altogether
to send the message to the default destination.

 Whichever form of convertAndSend() you choose, the TacoOrder passed into
convertAndSend() is converted into a Message before it’s sent. Under the covers, this
is achieved with an implementation of MessageConverter that does the dirty work of
converting application domain objects to Message objects.

CONFIGURING A MESSAGE CONVERTER

MessageConverter is a Spring-defined interface that has only the following two meth-
ods to be implemented:

public interface MessageConverter {
 Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException;
 Object fromMessage(Message message)
}

Although this interface is simple enough to implement, you often won’t need to cre-
ate a custom implementation. Spring already offers a handful of implementations,
such as those described in table 9.3.

SimpleMessageConverter is the default, but it requires that the object being sent
implement Serializable. This may be a good idea, but you may prefer to use one of
the other message converters, such as MappingJackson2MessageConverter, to avoid
that restriction.

 To apply a different message converter, all you must do is declare an instance of the
chosen converter as a bean. For example, the following bean declaration will enable
MappingJackson2MessageConverter to be used instead of SimpleMessageConverter:

Table 9.3 Spring message converters for common conversion tasks (all in the
org.springframework.jms.support.converter package)

Message converter What it does

MappingJackson2MessageConverter Uses the Jackson 2 JSON library to convert messages to
and from JSON

MarshallingMessageConverter Uses JAXB to convert messages to and from XML

MessagingMessageConverter Converts a Message from the messaging abstraction to
and from a Message using an underlying
MessageConverter for the payload and a
JmsHeaderMapper to map the JMS headers to and from
standard message headers

SimpleMessageConverter Converts a String to and from a TextMessage, byte
arrays to and from a BytesMessage, a Map to and from
a MapMessage, and a Serializable to and from an
ObjectMessage

220 CHAPTER 9 Sending messages asynchronously
@Bean
public MappingJackson2MessageConverter messageConverter() {
 MappingJackson2MessageConverter messageConverter =
 new MappingJackson2MessageConverter();
 messageConverter.setTypeIdPropertyName("_typeId");
 return messageConverter;
}

This bean method can be placed in any configuration class in the application that
sends and receives messages with JMS, including alongside the Destination bean in
MessagingConfig.

 Notice that you called setTypeIdPropertyName() on the MappingJackson2-
MessageConverter before returning it. This is very important, because it enables the
receiver to know what type to convert an incoming message to. By default, it will con-
tain the fully qualified classname of the type being converted. But this method is
somewhat inflexible, requiring that the receiver also have the same type, with the
same fully qualified classname.

 To allow for more flexibility, you can map a synthetic type name to the actual type
by calling setTypeIdMappings() on the message converter. For example, the follow-
ing change to the message converter bean method maps a synthetic TacoOrder type
ID to the TacoOrder class:

@Bean
public MappingJackson2MessageConverter messageConverter() {
 MappingJackson2MessageConverter messageConverter =
 new MappingJackson2MessageConverter();
 messageConverter.setTypeIdPropertyName("_typeId");

 Map<String, Class<?>> typeIdMappings = new HashMap<String, Class<?>>();
 typeIdMappings.put("order", TacoOrder.class);
 messageConverter.setTypeIdMappings(typeIdMappings);

 return messageConverter;
}

Instead of the fully qualified classname being sent in the message’s _typeId property,
the value TacoOrder will be sent. In the receiving application, a similar message con-
verter will have been configured, mapping TacoOrder to its own understanding of
what an order is. That implementation of an order may be in a different package,
have a different name, and even have a subset of the sender’s TacoOrder properties.

POSTPROCESSING MESSAGES

Let’s suppose that in addition to its lucrative web business, Taco Cloud has decided to
open a few brick-and-mortar taco joints. Given that any of their restaurants could also
be a fulfillment center for the web business, they need a way to communicate the
source of an order to the kitchens at the restaurants. This will enable the kitchen staff
to employ a different process for store orders than for web orders.

221Sending messages with JMS
 It would be reasonable to add a new source property to the TacoOrder object to
carry this information, populating it with WEB for orders placed online and with STORE
for orders placed in the stores. But that would require a change to both the website’s
TacoOrder class and the kitchen application’s TacoOrder class when, in reality, it’s
information that’s required only for the taco preparers.

 An easier solution would be to add a custom header to the message to carry the
order’s source. If you were using the send() method to send the taco orders, this
could easily be accomplished by calling setStringProperty() on the Message object
as follows:

jms.send("tacocloud.order.queue",
 session -> {
 Message message = session.createObjectMessage(order);
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 });

The problem here is that you aren’t using send(). By choosing to use convertAnd-
Send(), the Message object is created under the covers, and you don’t have access to it.

 Fortunately, you have a way to tweak a Message created under the covers before it’s
sent. By passing in a MessagePostProcessor as the final parameter to convertAnd-
Send(), you can do whatever you want with the Message after it has been created. The
following code still uses convertAndSend(), but it also uses a MessagePostProcessor
to add the X_ORDER_SOURCE header before the message is sent:

jms.convertAndSend("tacocloud.order.queue", order, new MessagePostProcessor()
{

 @Override
 public Message postProcessMessage(Message message) throws JMSException {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
 }
});

You may have noticed that MessagePostProcessor is a functional interface. This
means that you can simplify it a bit by replacing the anonymous inner class with a
lambda as shown here:

jms.convertAndSend("tacocloud.order.queue", order,
 message -> {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
 });

Although you need this particular MessagePostProcessor for only this one call to
convertAndSend(), you may find yourself using the same MessagePostProcessor
for several different calls to convertAndSend(). In those cases, perhaps a method
reference, shown next, is a better choice than a lambda, avoiding unnecessary code
duplication:

222 CHAPTER 9 Sending messages asynchronously
@GetMapping("/convertAndSend/order")
public String convertAndSendOrder() {
 TacoOrder order = buildOrder();
 jms.convertAndSend("tacocloud.order.queue", order,
 this::addOrderSource);
 return "Convert and sent order";
}

private Message addOrderSource(Message message) throws JMSException {
 message.setStringProperty("X_ORDER_SOURCE", "WEB");
 return message;
}

You’ve now seen several ways of sending messages. But it does no good to send a
message if nobody ever receives it. Let’s look at how you can receive messages with
Spring JMS.

9.1.3 Receiving JMS messages

When it comes to consuming messages, you have the choice of a pull model, where your
code requests a message and waits until one arrives, or a push model, in which messages
are handed to your code as they become available.

 JmsTemplate offers several methods for receiving messages, but all of them use
a pull model. You call one of those methods to request a message, and the thread is
blocked until a message is available (which could be immediately or it might take
a while).

 On the other hand, you also have the option of using a push model, wherein you
define a message listener that’s invoked any time a message is available.

 Both options are suitable for a variety of use cases. It’s generally accepted that the
push model is the best choice, because it doesn’t block a thread. But in some use
cases, a listener could be overburdened if messages arrive too quickly. The pull model
enables a consumer to declare that they’re ready to process a new message.

 Let’s look at both ways of receiving messages. We’ll start with the pull model
offered by JmsTemplate.

RECEIVING WITH JMSTEMPLATE

JmsTemplate offers several methods for pulling methods from the broker, including
the following:

Message receive() throws JmsException;
Message receive(Destination destination) throws JmsException;
Message receive(String destinationName) throws JmsException;

Object receiveAndConvert() throws JmsException;
Object receiveAndConvert(Destination destination) throws JmsException;
Object receiveAndConvert(String destinationName) throws JmsException;

As you can see, these six methods mirror the send() and convertAndSend() methods
from JmsTemplate. The receive() methods receive a raw Message, whereas the

223Sending messages with JMS
receiveAndConvert() methods use a configured message converter to convert mes-
sages into domain types. And for each of these, you can specify either a Destination
or a String containing the destination name, or you can pull a message from the
default destination.

 To see these in action, you’ll write some code that pulls an TacoOrder from the
tacocloud.order.queue destination. The following listing shows OrderReceiver, a
service component that receives order data using JmsTemplate.receive().

package tacos.kitchen.messaging.jms;
import javax.jms.Message;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.support.converter.MessageConverter;
import org.springframework.stereotype.Component;

@Component
public class JmsOrderReceiver implements OrderReceiver {
 private JmsTemplate jms;
 private MessageConverter converter;

 @Autowired
 public JmsOrderReceiver(JmsTemplate jms, MessageConverter converter) {
 this.jms = jms;
 this.converter = converter;
 }
 public TacoOrder receiveOrder() {
 Message message = jms.receive("tacocloud.order.queue");
 return (TacoOrder) converter.fromMessage(message);
 }
}

Here you’ve used a String to specify the destination from which to pull an order. The
receive() method returns an unconverted Message. But what you really need is the
TacoOrder that’s inside of the Message, so the very next thing that happens is that you
use an injected message converter to convert the message. The type ID property in the
message will guide the converter in converting it to a TacoOrder, but it’s returned as
an Object that requires casting before you can return it.

 Receiving a raw Message object might be useful in some cases where you need to
inspect the message’s properties and headers. But often you need only the payload.
Converting that payload to a domain type is a two-step process and requires that the
message converter be injected into the component. When you care only about
the message’s payload, receiveAndConvert() is a lot simpler. The next listing shows
how JmsOrderReceiver could be reworked to use receiveAndConvert() instead of
receive().

Listing 9.2 Pulling orders from a queue

224 CHAPTER 9 Sending messages asynchronously
package tacos.kitchen.messaging.jms;

import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Component;
import tacos.TacoOrder;
import tacos.kitchen.OrderReceiver;

@Component
public class JmsOrderReceiver implements OrderReceiver {

 private JmsTemplate jms;

 public JmsOrderReceiver(JmsTemplate jms) {
 this.jms = jms;
 }

 @Override
 public TacoOrder receiveOrder() {
 return (TacoOrder) jms.receiveAndConvert("tacocloud.order.queue");
 }

}

This new version of JmsOrderReceiver has a receiveOrder() method that has been
reduced to only one line. Plus, you no longer need to inject a MessageConverter,
because all of the message conversion will be done behind the scenes in receiveAnd-
Convert().

 Before moving on, let’s consider how receiveOrder() might be used in the Taco
Cloud kitchen application. A food preparer at one of Taco Cloud’s kitchens might
push a button or take some action to indicate that they’re ready to start building
tacos. At that point, receiveOrder() would be invoked and the call to receive() or
receiveAndConvert() would block. Nothing else would happen until an order mes-
sage is ready. Once an order arrives, it will be returned from receiveOrder(), and its
information will be used to display the details of the order for the food preparer to get
to work. This seems like a natural choice for a pull model.

 Now let’s see how a push model works by declaring a JMS listener.

DECLARING MESSAGE LISTENERS

Unlike the pull model, where an explicit call to receive() or receiveAndConvert()
was required to receive a message, a message listener is a passive component that’s
idle until a message arrives.

 To create a message listener that reacts to JMS messages, you simply annotate a
method in a component with @JmsListener. The next listing shows a new Order-
Listener component that listens passively for messages, rather than actively request-
ing them.

Listing 9.3 Receiving an already-converted TacoOrder object

225Sending messages with JMS
package tacos.kitchen.messaging.jms.listener;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Profile;
import org.springframework.jms.annotation.JmsListener;
import org.springframework.stereotype.Component;

import tacos.TacoOrder;
import tacos.kitchen.KitchenUI;

@Profile("jms-listener")
@Component
public class OrderListener {

 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @JmsListener(destination = "tacocloud.order.queue")
 public void receiveOrder(TacoOrder order) {
 ui.displayOrder(order);
 }

}

The receiveOrder() method is annotated with JmsListener to “listen” for messages
on the tacocloud.order.queue destination. It doesn’t deal with JmsTemplate, nor is
it explicitly invoked by your application code. Instead, framework code within Spring
waits for messages to arrive on the specified destination, and when they arrive, the
receiveOrder() method is invoked automatically with the message’s TacoOrder pay-
load as a parameter.

 In many ways, the @JmsListener annotation is like one of Spring MVC’s request
mapping annotations, such as @GetMapping or @PostMapping. In Spring MVC, meth-
ods annotated with one of the request mapping methods react to requests to a speci-
fied path. Similarly, methods that are annotated with @JmsListener react to messages
that arrive in a destination.

 Message listeners are often touted as the best choice because they don’t block and
are able to handle multiple messages quickly. In the context of the Taco Cloud appli-
cation, however, perhaps they aren’t the best choice. The food preparers are a signifi-
cant bottleneck in the system and may not be able to prepare tacos as quickly as orders
come in. A food preparer may have half-fulfilled an order when a new order is dis-
played on the screen. The kitchen user interface would need to buffer the orders as
they arrive to avoid overburdening the kitchen staff.

Listing 9.4 An OrderListener component that listens for orders

226 CHAPTER 9 Sending messages asynchronously
 That’s not to say that message listeners are bad. On the contrary, they’re a perfect
fit when messages can be handled quickly. But when the message handlers need to be
able to ask for more messages on their own timing, the pull model offered by Jms-
Template seems more fitting.

 Because JMS is defined by a standard Java specification and supported by many
message broker implementations, it’s a common choice for messaging in Java. But
JMS has a few shortcomings, not the least of which is that as a Java specification, its use
is limited to Java applications. Newer messaging options such as RabbitMQ and Kafka
address these shortcomings and are available for other languages and platforms
beyond the JVM. Let’s set JMS aside and see how you could have implemented your
taco order messaging with RabbitMQ.

9.2 Working with RabbitMQ and AMQP
As arguably the most prominent implementation of AMQP, RabbitMQ offers a more
advanced message-routing strategy than JMS. Whereas JMS messages are addressed
with the name of a destination from which the receiver will retrieve them, AMQP mes-
sages are addressed with the name of an exchange and a routing key, which are decou-
pled from the queue to which the receiver is listening. This relationship between an
exchange and queues is illustrated in figure 9.2.

When a message arrives at the RabbitMQ broker, it goes to the exchange for which it
was addressed. The exchange is responsible for routing it to one or more queues,
depending on the type of exchange, the binding between the exchange and
queues, and the value of the message’s routing key.

 There are several different kinds of exchanges, including the following:

 Default—A special exchange that’s automatically created by the broker. It routes
messages to queues whose name is the same as the message’s routing key. All
queues will automatically be bound to the default exchange.

R bbitMQ brokera

ExchangeSender

Binding

Queue

Queue R verecei

R verecei

Binding

Figure 9.2 Messages sent to a RabbitMQ exchange are routed to one or more
queues, based on routing keys and bindings.

227Working with RabbitMQ and AMQP
 Direct—Routes messages to a queue whose binding key is the same as the mes-
sage’s routing key.

 Topic—Routes a message to one or more queues where the binding key (which
may contain wildcards) matches the message’s routing key.

 Fanout—Routes messages to all bound queues without regard for binding keys
or routing keys.

 Headers—Similar to a topic exchange, except that routing is based on message
header values rather than routing keys.

 Dead letter—A catchall for any messages that are undeliverable (meaning they
don’t match any defined exchange-to-queue binding).

The simplest forms of exchanges are default and fanout—these roughly correspond
to a JMS queue and topic. But the other exchanges allow you to define more flexible
routing schemes.

 The most important thing to understand is that messages are sent to exchanges
with routing keys and they’re consumed from queues. How they get from an exchange
to a queue depends on the binding definitions and what best suits your use cases.

 Which exchange type you use and how you define the bindings from exchanges to
queues has little bearing on how messages are sent and received in your Spring appli-
cations. Therefore, we’ll focus on how to write code that sends and receives messages
with Rabbit.

NOTE For a more detailed discussion on how best to bind queues to exchanges,
see RabbitMQ in Depth by Gavin Roy (Manning, 2017) or RabbitMQ in Action by
Alvaro Videla and Jason J. W. Williams (Manning, 2012).

9.2.1 Adding RabbitMQ to Spring

Before you can start sending and receiving RabbitMQ messages with Spring, you’ll
need to add Spring Boot’s AMQP starter dependency to your build in place of the
Artemis or ActiveMQ starter you added in the previous section, as shown here:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Adding the AMQP starter to your build will trigger autoconfiguration that will create
an AMQP connection factory and RabbitTemplate beans, as well as other supporting
components. Simply adding this dependency is all you need to do to start sending and
receiving messages from a RabbitMQ broker with Spring. But there are a handful of
useful properties you’ll want to know about, listed in table 9.4.

 For development purposes, you’ll probably have a RabbitMQ broker that doesn’t
require authentication running on your local machine, listening on port 5672. These
properties likely won’t get much use while you’re still in development, but they’ll no
doubt prove useful when your applications move into production.

228 CHAPTER 9 Sending messages asynchronously
RUNNING A RABBITMQ BROKER If you don’t already have a RabbitMQ broker
to work with, you have several options for running RabbitMQ on your local
machine. See the official RabbitMQ documentation at https://www.rabbitmq
.com/download.html for the latest instructions for running RabbitMQ.

For example, suppose that as you move into production, your RabbitMQ broker is on
a server named rabbit.tacocloud.com, listening on port 5673, and requiring creden-
tials. In that case, the following configuration in your application.yml file will set those
properties when the prod profile is active:

spring:
 profiles: prod
 rabbitmq:
 host: rabbit.tacocloud.com
 port: 5673
 username: tacoweb
 password: l3tm31n

Now that RabbitMQ is configured in your application, it’s time to start sending mes-
sages with RabbitTemplate.

9.2.2 Sending messages with RabbitTemplate

At the core of Spring’s support for RabbitMQ messaging is RabbitTemplate. Rabbit-
Template is similar to JmsTemplate and offers a similar set of methods. As you’ll see,
however, some subtle differences align with the unique way that RabbitMQ works.

 With regard to sending messages with RabbitTemplate, the send() and convert-
AndSend() methods parallel the same-named methods from JmsTemplate. But unlike
the JmsTemplate methods, which route messages only to a given queue or topic,
RabbitTemplate methods send messages in terms of exchanges and routing keys. Here
are a few of the most relevant methods for sending messages with RabbitTemplate:1

// Send raw messages
void send(Message message) throws AmqpException;
void send(String routingKey, Message message) throws AmqpException;

Table 9.4 Properties for configuring the location and credentials of a RabbitMQ broker

Property Description

spring.rabbitmq.addresses A comma-separated list of RabbitMQ broker addresses

spring.rabbitmq.host The broker’s host (defaults to localhost)

spring.rabbitmq.port The broker’s port (defaults to 5672)

spring.rabbitmq.username The username for accessing the broker (optional)

spring.rabbitmq.password The password for accessing the broker (optional)

1 These methods are defined by AmqpTemplate, an interface implemented by RabbitTemplate.

https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html

229Working with RabbitMQ and AMQP
void send(String exchange, String routingKey, Message message)
 throws AmqpException;

// Send messages converted from objects
void convertAndSend(Object message) throws AmqpException;
void convertAndSend(String routingKey, Object message)
 throws AmqpException;
void convertAndSend(String exchange, String routingKey,
 Object message) throws AmqpException;

// Send messages converted from objects with post-processing
void convertAndSend(Object message, MessagePostProcessor mPP)
 throws AmqpException;
void convertAndSend(String routingKey, Object message,
 MessagePostProcessor messagePostProcessor)
 throws AmqpException;
void convertAndSend(String exchange, String routingKey,
 Object message,
 MessagePostProcessor messagePostProcessor)
 throws AmqpException;

As you can see, these methods follow a pattern similar to their twins in JmsTemplate.
The first three send() methods all send a raw Message object. The next three convert-
AndSend() methods accept an object that will be converted to a Message behind the
scenes before being sent. The final three convertAndSend() methods are like the pre-
vious three, but they accept a MessagePostProcessor that can be used to manipulate
the Message object before it’s sent to the broker.

 These methods differ from their JmsTemplate counterparts in that they accept
String values to specify an exchange and routing key, rather than a destination name
(or Destination object). The methods that don’t take an exchange will have their
messages sent to the default exchange. Likewise, the methods that don’t take a rout-
ing key will have their messages routed with a default routing key.

 Let’s put RabbitTemplate to work sending taco orders. One way you can do that is
by using the send() method, as shown in listing 9.5. But before you can call send(),
you’ll need to convert a TacoOrder object to a Message. That could be a tedious job, if
not for the fact that RabbitTemplate makes its message converter readily available
with a getMessageConverter() method.

package tacos.messaging;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.core.MessageProperties;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import
 org.springframework.amqp.support.converter.MessageConverter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import tacos.Order;

Listing 9.5 Sending a message with RabbitTemplate.send()

230 CHAPTER 9 Sending messages asynchronously
@Service
public class RabbitOrderMessagingService
 implements OrderMessagingService {
 private RabbitTemplate rabbit;

 @Autowired
 public RabbitOrderMessagingService(RabbitTemplate rabbit) {
 this.rabbit = rabbit;
 }

 public void sendOrder(TacoOrder order) {
 MessageConverter converter = rabbit.getMessageConverter();
 MessageProperties props = new MessageProperties();
 Message message = converter.toMessage(order, props);
 rabbit.send("tacocloud.order", message);
 }
}

You’ll notice that RabbitOrderMessagingService implements OrderMessaging-
Service, just like JmsOrderMessagingService. This means that it can be injected into
OrderApiController the same way to send order messages when an order is placed.
Because we don’t yet have anything to receive those messages, though, you can use the
RabbitMQ browser-based management console. See https://www.rabbitmq.com/
management.html for details on how to enable and use the RabbitMQ console.

 Once you have a MessageConverter in hand, it’s simple work to convert a Taco-
Order to a Message. You must supply any message properties with a MessageProperties,
but if you don’t need to set any such properties, a default instance of Message-
Properties is fine. Then, all that’s left is to call send(), passing in the exchange and
routing key (both of which are optional) along with the message. In this example,
you’re specifying only the routing key—tacocloud.order—along with the message,
so the default exchange will be used.

 Speaking of default exchanges, the default exchange name is "" (an empty
String), which corresponds to the default exchange that’s automatically created by
the RabbitMQ broker. Likewise, the default routing key is "" (whose routing is depen-
dent upon the exchange and bindings in question). You can override these defaults by
setting the spring.rabbitmq.template.exchange and spring.rabbitmq.template
.routing-key properties as follows:

spring:
 rabbitmq:
 template:
 exchange: tacocloud.order
 routing-key: kitchens.central

In this case, all messages sent without specifying an exchange will automatically be
sent to the exchange whose name is tacocloud.order. If the routing key is also
unspecified in the call to send() or convertAndSend(), the messages will have a rout-
ing key of kitchens.central.

https://www.rabbitmq.com/management.html
https://www.rabbitmq.com/management.html
https://www.rabbitmq.com/management.html

231Working with RabbitMQ and AMQP
 Creating a Message object from the message converter is easy enough, but it’s even
easier to use convertAndSend() to let RabbitTemplate handle all of the conversion
work for you, as shown next:

public void sendOrder(TacoOrder order) {
 rabbit.convertAndSend("tacocloud.order", order);
}

CONFIGURING A MESSAGE CONVERTER

By default, message conversion is performed with SimpleMessageConverter, which is
able to convert simple types (like String) and Serializable objects to Message
objects. But Spring offers several message converters for RabbitTemplate, including
the following:

 Jackson2JsonMessageConverter—Converts objects to and from JSON using
the Jackson 2 JSON processor

 MarshallingMessageConverter—Converts using a Spring Marshaller and
Unmarshaller

 SerializerMessageConverter—Converts String and native objects of any
kind using Spring’s Serializer and Deserializer abstractions

 SimpleMessageConverter—Converts String, byte arrays, and Serializable
types

 ContentTypeDelegatingMessageConverter—Delegates to another Message-
Converter based on the contentType header

 MessagingMessageConverter—Delegates to an underlying MessageConverter
for the message conversion and to an AmqpHeaderConverter for the headers

If you need to change the message converter, just configure a bean of type Message-
Converter. For example, for JSON-based message conversion, you can configure a
Jackson2JsonMessageConverter like this:

@Bean
public Jackson2JsonMessageConverter messageConverter() {
 return new Jackson2JsonMessageConverter();
}

Spring Boot autoconfiguration will discover this bean and inject it into Rabbit-
Template in place of the default message converter.

SETTING MESSAGE PROPERTIES

As with JMS, you may need to set some headers in the messages you send. For exam-
ple, let’s say you need to send an X_ORDER_SOURCE for all orders submitted through
the Taco Cloud website. When creating your own Message objects, you can set the
header through the MessageProperties instance you give to the message converter.
Revisiting the sendOrder() method from listing 9.5, you only need one additional line
of code to set the header, as shown next:

232 CHAPTER 9 Sending messages asynchronously
public void sendOrder(TacoOrder order) {
 MessageConverter converter = rabbit.getMessageConverter();
 MessageProperties props = new MessageProperties();
 props.setHeader("X_ORDER_SOURCE", "WEB");
 Message message = converter.toMessage(order, props);
 rabbit.send("tacocloud.order", message);
}

When using convertAndSend(), however, you don’t have quick access to the Message-
Properties object. A MessagePostProcessor can help you with that, though, as
shown here:

public void sendOrder(TacoOrder order) {
 rabbit.convertAndSend("tacocloud.order.queue", order,
 new MessagePostProcessor() {
 @Override
 public Message postProcessMessage(Message message)
 throws AmqpException {
 MessageProperties props = message.getMessageProperties();
 props.setHeader("X_ORDER_SOURCE", "WEB");
 return message;
 }
 });
 }

Here you supply convertAndSend() with an anonymous inner-class implementa-
tion of MessagePostProcessor. In the postProcessMessage() method, you pull the
MessageProperties from the Message and then call setHeader() to set the X_ORDER
_SOURCE header.

 Now that you’ve seen how to send messages with RabbitTemplate, let’s switch our
focus over to the code that receives messages from a RabbitMQ queue.

9.2.3 Receiving messages from RabbitMQ

You’ve seen that sending messages with RabbitTemplate doesn’t differ much from
sending messages with JmsTemplate. And as it turns out, receiving messages from a
RabbitMQ queue isn’t very different than from JMS.

 As with JMS, you have the following two choices:

 Pulling messages from a queue with RabbitTemplate
 Having messages pushed to a @RabbitListener-annotated method

Let’s start by looking at the pull-based RabbitTemplate.receive() method.

RECEIVING MESSAGES WITH RABBITTEMPLATE

RabbitTemplate comes with several methods for pulling messages from a queue. A
few of the most useful ones are listed here:

// Receive messages
Message receive() throws AmqpException;
Message receive(String queueName) throws AmqpException;

233Working with RabbitMQ and AMQP
Message receive(long timeoutMillis) throws AmqpException;
Message receive(String queueName, long timeoutMillis) throws AmqpException;

// Receive objects converted from messages
Object receiveAndConvert() throws AmqpException;
Object receiveAndConvert(String queueName) throws AmqpException;
Object receiveAndConvert(long timeoutMillis) throws AmqpException;
Object receiveAndConvert(String queueName, long timeoutMillis)
 throws AmqpException;

// Receive type-safe objects converted from messages
<T> T receiveAndConvert(ParameterizedTypeReference<T> type)
 throws AmqpException;
<T> T receiveAndConvert(
 String queueName, ParameterizedTypeReference<T> type)
 throws AmqpException;
<T> T receiveAndConvert(
 long timeoutMillis, ParameterizedTypeReference<T> type)
 throws AmqpException;
<T> T receiveAndConvert(String queueName, long timeoutMillis,
 ParameterizedTypeReference<T> type)
 throws AmqpException;

These methods are the mirror images of the send() and convertAndSend() methods
described earlier. Whereas send() is used to send raw Message objects, receive()
receives raw Message objects from a queue. Likewise, receiveAndConvert() receives
messages and uses a message converter to convert them into domain objects before
returning them.

 But a few obvious differences occur in the method signatures. First, none of these
methods take an exchange or routing key as a parameter. That’s because exchanges
and routing keys are used to route messages to queues, but once the messages are in
the queue, their next destination is the consumer who pulls them off the queue. Con-
suming applications needn’t concern themselves with exchanges or routing keys. A
queue is the only thing the consuming applications need to know about.

 You’ll also notice that many of the methods accept a long parameter to indicate a
time-out for receiving the messages. By default, the receive time-out is 0 milliseconds. That
is, a call to receive() will return immediately, potentially with a null value if no messages
are available. This is a marked difference from how the receive() methods behave in
JmsTemplate. By passing in a time-out value, you can have the receive() and receive-
AndConvert() methods block until a message arrives or until the time-out expires. But
even with a non-zero time-out, your code will need to be ready to deal with a null return.

 Let’s see how you can put this in action. The next listing shows a new Rabbit-based
implementation of OrderReceiver that uses RabbitTemplate to receive orders.

package tacos.kitchen.messaging.rabbit;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.core.RabbitTemplate;

Listing 9.6 Pulling orders from RabbitMQ with RabbitTemplate

234 CHAPTER 9 Sending messages asynchronously
import org.springframework.amqp.support.converter.MessageConverter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class RabbitOrderReceiver {
 private RabbitTemplate rabbit;
 private MessageConverter converter;

 @Autowired
 public RabbitOrderReceiver(RabbitTemplate rabbit) {
 this.rabbit = rabbit;
 this.converter = rabbit.getMessageConverter();
 }

 public TacoOrder receiveOrder() {
 Message message = rabbit.receive("tacocloud.order");
 return message != null
 ? (TacoOrder) converter.fromMessage(message)
 : null;
 }
}

The receiveOrder() method is where all of the action takes place. It makes a call to
the receive() method on the injected RabbitTemplate to pull an order from the
tacocloud.order queue. It provides no time-out value, so you can assume only that
the call returns immediately with either a Message or null. If a Message is returned,
you use the MessageConverter from the RabbitTemplate to convert the Message to a
TacoOrder. On the other hand, if receive() returns null, you’ll return a null.

 Depending on the use case, you may be able to tolerate a small delay. In the Taco
Cloud kitchen’s overhead display, for example, you can possibly wait a while if no
orders are available. Let’s say you decide to wait up to 30 seconds before giving up.
Then the receiveOrder() method can be changed to pass a 30,000 millisecond delay
to receive() as follows:

public TacoOrder receiveOrder() {
 Message message = rabbit.receive("tacocloud.order.queue", 30000);
 return message != null
 ? (TacoOrder) converter.fromMessage(message)
 : null;
}

If you’re like me, seeing a hardcoded number like that gives you a bit of discomfort.
You might be thinking that it’d be a good idea to create a @ConfigurationProperties-
annotated class so you could configure that time-out with a Spring Boot configuration
property. I’d agree with you, if it weren’t for the fact that Spring Boot already offers
such a configuration property. If you want to set the time-out via configuration, simply
remove the time-out value in the call to receive() and set it in your configuration
with the spring.rabbitmq.template.receive-timeout property like so:

235Working with RabbitMQ and AMQP
spring:
 rabbitmq:
 template:
 receive-timeout: 30000

Back in the receiveOrder() method, notice that you had to use the message con-
verter from RabbitTemplate to convert the incoming Message object to a TacoOrder
object. But if the RabbitTemplate is carrying a message converter around, why can’t it
do the conversion for you? That’s precisely what the receiveAndConvert() method is
for. Using receiveAndConvert(), you can rewrite receiveOrder() like this:

public TacoOrder receiveOrder() {
 return (TacoOrder) rabbit.receiveAndConvert("tacocloud.order.queue");
}

That’s a lot simpler, isn’t it? The only troubling thing I see is the cast from Object to
TacoOrder. There’s an alternative to casting, though. Instead, you can pass a
ParameterizedTypeReference to receiveAndConvert() to receive a TacoOrder object
directly as follows:

public TacoOrder receiveOrder() {
 return rabbit.receiveAndConvert("tacocloud.order.queue",
 new ParameterizedTypeReference<Order>() {});
}

It’s debatable whether that’s better than casting, but it is a more type-safe approach
than casting. The only requirement to using a ParameterizedTypeReference with
receiveAndConvert() is that the message converter must be an implementation of
SmartMessageConverter; Jackson2JsonMessageConverter is the only out-of-the-box
implementation to choose from.

 The pull model offered by JmsTemplate fits a lot of use cases, but often it’s better
to have code that listens for messages and that’s invoked when messages arrive. Let’s
see how you can write message-driven beans that respond to RabbitMQ messages.

HANDLING RABBITMQ MESSAGES WITH LISTENERS

For message-driven RabbitMQ beans, Spring offers RabbitListener, the RabbitMQ
counterpart to JmsListener. To specify that a method should be invoked when a mes-
sage arrives in a RabbitMQ queue, annotate a bean’s method with @RabbitListener.

 For example, the following listing shows a RabbitMQ implementation of Order-
Receiver that’s annotated to listen for order messages rather than to poll for them
with RabbitTemplate.

package tacos.kitchen.messaging.rabbit.listener;

import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

Listing 9.7 Declaring a method as a RabbitMQ message listener

236 CHAPTER 9 Sending messages asynchronously
import tacos.TacoOrder;
import tacos.kitchen.KitchenUI;

@Component
public class OrderListener {

 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @RabbitListener(queues = "tacocloud.order.queue")
 public void receiveOrder(TacoOrder order) {
 ui.displayOrder(order);
 }

}

You’ll no doubt notice that this looks remarkably like the code from listing 9.4.
Indeed, the only thing that changed was the listener annotation—from @JmsListener
to @RabbitListener. As wonderful as @RabbitListener is, this near duplication of
code leaves me with little to say about @RabbitListener that I haven’t already said
about @JmsListener. They’re both great for writing code that responds to messages
that are pushed to them from their respective brokers—a JMS broker for @JmsListener
and a RabbitMQ broker for @RabbitListener.

 Although you may sense a lack of enthusiasm about @RabbitListener in that previ-
ous paragraph, be certain that isn’t my intent. In truth, the fact that @RabbitListener
works much like @JmsListener is actually quite exciting! It means you don’t need to
learn a completely different programming model when working with RabbitMQ vs.
Artemis or ActiveMQ. The same excitement holds true for the similarities between
RabbitTemplate and JmsTemplate.

 Let’s hold on to that excitement as we wrap up this chapter by looking at one more
messaging option supported by Spring: Apache Kafka.

9.3 Messaging with Kafka
Apache is the newest messaging option we’re examining in this chapter. At a glance,
Kafka is a message broker just like ActiveMQ, Artemis, or Rabbit. But Kafka has a few
unique tricks up its sleeves.

 Kafka is designed to run in a cluster, affording great scalability. And by partition-
ing its topics across all instances in the cluster, it’s very resilient. Whereas RabbitMQ
deals primarily with queues in exchanges, Kafka utilizes topics only to offer pub/sub
messaging.

 Kafka topics are replicated across all brokers in the cluster. Each node in the clus-
ter acts as a leader for one or more topics, being responsible for that topic’s data and
replicating it to the other nodes in the cluster.

237Messaging with Kafka
 Going a step further, each topic can be split into multiple partitions. In that case,
each node in the cluster is the leader for one or more partitions of a topic, but not for
the entire topic. Responsibility for the topic is split across all nodes. Figure 9.3 illus-
trates how this works.

Due to Kafka’s unique architecture, I encourage you to read more about it in Kafka in
Action by Dylan Scott, Viktor Gamov, and Dave Klein (Manning, 2021). For our pur-
poses, we’ll focus on how to send messages to and receive them from Kafka with Spring.

9.3.1 Setting up Spring for Kafka messaging

To start using Kafka for messaging, you’ll need to add the appropriate dependencies to
your build. Unlike the JMS and RabbitMQ options, however, there isn’t a Spring Boot
starter for Kafka. Have no fear, though; you’ll only need one dependency, shown next:

<dependency>
 <groupId>org.springframework.kafka</groupId>
 <artifactId>spring-kafka</artifactId>
 </dependency>

This one dependency brings everything you need for Kafka to the project. What’s
more, its presence will trigger Spring Boot autoconfiguration for Kafka that will,
among other things, arrange for a KafkaTemplate in the Spring application context.
All you need to do is inject the KafkaTemplate and go to work sending and receiving
messages.

 Before you start sending and receiving messages, however, you should be aware of
a few properties that will come in handy when working with Kafka. Specifically, Kafka-
Template defaults to work with a Kafka broker on localhost, listening on port 9092.

Producer

Producer

Producer

Consumer

Consumer

Consumer

Kafka cluster

Partition

0

Partition

1

Partition

2B
ro

k
e
r

Partition

0

Partition

1

Partition

2B
ro

k
e
r

B
ro

k
e
r

Partition

0

Partition

1

Partition

2

Figure 9.3 A Kafka cluster is composed of multiple brokers, each acting as a leader for
partitions of the topics.

238 CHAPTER 9 Sending messages asynchronously
It’s fine to start up a Kafka broker locally while developing an application, but when
it’s time to go to production, you’ll need to configure a different host and port.

INSTALLING A KAFKA CLUSTER You’ll need a Kafka cluster available if you want
to run the examples presented in this chapter. The Kafka documentation at
https://kafka.apache.org/quickstart is a great place to start to learn how to
run Kafka locally on your machine.

The spring.kafka.bootstrap-servers property sets the location of one or more
Kafka servers used to establish an initial connection to the Kafka cluster. For example,
if one of the Kafka servers in the cluster is running at kafka.tacocloud.com and listen-
ing on port 9092, you can configure its location in YAML like this:

spring:
 kafka:
 bootstrap-servers:
 - kafka.tacocloud.com:9092

But notice that spring.kafka.bootstrap-servers is plural and accepts a list. As
such, you can provide it with multiple Kafka servers in the cluster, as shown next:

spring:
 kafka:
 bootstrap-servers:
 - kafka.tacocloud.com:9092
 - kafka.tacocloud.com:9093
 - kafka.tacocloud.com:9094

These configurations are for Kafka bootstrap servers on a host named kafka.taco-
cloud.com. If you’re running your Kafka cluster locally (which is likely during devel-
opment), then you’ll want to use localhost instead, shown next:

spring:
 kafka:
 bootstrap-servers:
 - localhost:9092

With Kafka set up in your project, you’re ready to send and receive messages. You’ll
start by sending TacoOrder objects to Kafka using KafkaTemplate.

9.3.2 Sending messages with KafkaTemplate

In many ways, KafkaTemplate is similar to its JMS and RabbitMQ counterparts. At the
same time, however, it’s very different. This becomes apparent as we consider its meth-
ods for sending messages, as shown here:

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);
ListenableFuture<SendResult<K, V>> send(String topic,
 Integer partition, K key, V data);

https://kafka.apache.org/quickstart

239Messaging with Kafka
ListenableFuture<SendResult<K, V>> send(String topic,
 Integer partition, Long timestamp, K key, V data);
ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition,
 K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition,
 Long timestamp, K key, V data);

The first thing you may have noticed is that there are no convertAndSend() methods.
That’s because KafkaTemplate is typed with generics and is able to deal with domain
types directly when sending messages. In a way, all of the send() methods are doing
the job of convertAndSend().

 You may also have noticed that there are several parameters to send() and send-
Default() that are quite different from what you used with JMS and Rabbit. When
sending messages in Kafka, you can specify the following parameters to guide how the
message is sent as follows:

 The topic to which to send the message (required for send())
 A partition to which to write the topic (optional)
 A key to send on the record (optional)
 A timestamp (optional; defaults to System.currentTimeMillis())
 The payload (required)

The topic and payload are the two most important parameters. Partitions and keys
have little effect on how you use KafkaTemplate, aside from being extra information
provided as parameters to send() and sendDefault(). For our purposes, we’re going
to focus on sending the message payload to a given topic and not worry ourselves with
partitions and keys.

 For the send() method, you can also choose to send a ProducerRecord, which is
little more than a type that captures all of the preceding parameters in a single object.
You can also send a Message object, but doing so would require you to convert your
domain objects into a Message. Generally, it’s easier to use one of the other methods
rather than to create and send a ProducerRecord or Message object.

 Using the KafkaTemplate and its send() method, you can write a Kafka-based
implementation of OrderMessagingService. The following listing shows what such an
implementation might look like.

package tacos.messaging;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import tacos.TacoOrder;

Listing 9.8 Sending orders with KafkaTemplate

240 CHAPTER 9 Sending messages asynchronously
@Service
public class KafkaOrderMessagingService
 implements OrderMessagingService {

 private KafkaTemplate<String, TacoOrder> kafkaTemplate;

 @Autowired
 public KafkaOrderMessagingService(
 KafkaTemplate<String, TacoOrder> kafkaTemplate) {
 this.kafkaTemplate = kafkaTemplate;
 }

 @Override
 public void sendOrder(TacoOrder order) {
 kafkaTemplate.send("tacocloud.orders.topic", order);
 }

}

In this new implementation of OrderMessagingService, the sendOrder() method
uses the send() method of the injected KafkaTemplate to send a TacoOrder to the
topic named tacocloud.orders.topic. Except for the word “Kafka” scattered through-
out the code, this isn’t much different than the code you wrote for JMS and Rabbit.
And, just like those other implementations of OrderMessagingService, it can be
injected into OrderApiController and used to send orders through Kafka when
orders are placed via the /api/orders endpoint.

 Until we create a Kafka implementation of the message receiver, you’ll need a con-
sole to view what was sent. There are several management consoles available for Kafka,
including Offset Explorer (https://www.kafkatool.com/) and Confluent’s Apache
Kafka UI (http://mng.bz/g1P8).

 If you set a default topic, you can simplify the sendOrder() method slightly. First,
set your default topic to tacocloud.orders.topic by setting the spring.kafka
.template.default-topic property as follows:

spring:
 kafka:
 bootstrap-servers:
 - localhost:9092
 template:
 default-topic: tacocloud.orders.topic

Then, in the sendOrder() method, you can call sendDefault() instead of send() and
not specify the topic name, as shown here:

@Override
public void sendOrder(TacoOrder order) {
 kafkaTemplate.sendDefault(order);
}

Now that your message-sending code has been written, let’s turn our attention to writ-
ing code that will receive those messages from Kafka.

https://www.kafkatool.com/
http://mng.bz/g1P8

241Messaging with Kafka
9.3.3 Writing Kafka listeners

Aside from the unique method signatures for send() and sendDefault(), Kafka-
Template differs from JmsTemplate and RabbitTemplate in that it doesn’t offer any
methods for receiving messages. That means the only way to consume messages from
a Kafka topic using Spring is to write a message listener.

 For Kafka, message listeners are defined as methods that are annotated with
@KafkaListener. The @KafkaListener annotation is roughly analogous to @Jms-
Listener and @RabbitListener and is used in much the same way. The next listing
shows what your listener-based order receiver might look like if written for Kafka.

package tacos.kitchen.messaging.kafka.listener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import tacos.Order;
import tacos.kitchen.KitchenUI;

@Component
public class OrderListener {

 private KitchenUI ui;

 @Autowired
 public OrderListener(KitchenUI ui) {
 this.ui = ui;
 }

 @KafkaListener(topics="tacocloud.orders.topic")
 public void handle(TacoOrder order) {
 ui.displayOrder(order);
 }

}

The handle() method is annotated with @KafkaListener to indicate that it should be
invoked when a message arrives in the topic named tacocloud.orders.topic. As it’s
written in listing 9.9, only a TacoOrder (the payload) is given to handle(). But if you
need additional metadata from the message, it can also accept a ConsumerRecord or
Message object.

 For example, the following implementation of handle() accepts a Consumer-
Record so that you can log the partition and timestamp of the message:

@KafkaListener(topics="tacocloud.orders.topic")
public void handle(
 TacoOrder order, ConsumerRecord<String, TacoOrder> record) {
 log.info("Received from partition {} with timestamp {}",
 record.partition(), record.timestamp());

Listing 9.9 Receiving orders with @KafkaListener

242 CHAPTER 9 Sending messages asynchronously
 ui.displayOrder(order);
}

Similarly, you could ask for a Message instead of a ConsumerRecord and achieve the
same thing, as shown here:

@KafkaListener(topics="tacocloud.orders.topic")
public void handle(Order order, Message<Order> message) {
 MessageHeaders headers = message.getHeaders();
 log.info("Received from partition {} with timestamp {}",
 headers.get(KafkaHeaders.RECEIVED_PARTITION_ID),
 headers.get(KafkaHeaders.RECEIVED_TIMESTAMP));
 ui.displayOrder(order);
}

It’s worth noting that the message payload is also available via ConsumerRecord.value()
or Message.getPayload(). This means that you could ask for the TacoOrder through
those objects instead of asking for it directly as a parameter to handle().

Summary
 Asynchronous messaging provides a layer of indirection between communicat-

ing applications, which allows for looser coupling and greater scalability.
 Spring supports asynchronous messaging with JMS, RabbitMQ, or Apache Kafka.
 Applications can use template-based clients (JmsTemplate, RabbitTemplate, or

KafkaTemplate) to send messages via a message broker.
 Receiving applications can consume messages in a pull-based model using the

same template-based clients.
 Messages can also be pushed to consumers by applying message listener annota-

tions (@JmsListener, @RabbitListener, or @KafkaListener) to bean methods.

Integrating Spring
One of the most frustrating things I encounter as I travel is being on a long flight
and having a poor or nonexistent in-flight internet connection. I like to use my air
time to get some work done, including writing many of the pages of this book. If
there’s no network connection, I’m at a disadvantage if I need to fetch a library or
look up a Javadoc, and I’m not able to get much work done. I’ve learned to pack a
book to read for those occasions.

 Just as we need to connect to the internet to be productive, many applications
must connect to external systems to perform their work. An application may need
to read or send emails, interact with an external API, or react to data being written
to a database. And, as data is ingested from or written to these external systems, the
application may need to process data in some way to translate it to or from the appli-
cation’s own domain.

This chapter covers
 Processing data in real time

 Defining integration flows

 Using Spring Integration’s Java DSL definition

 Integrating with emails, filesystems, and other
external systems
243

244 CHAPTER 10 Integrating Spring
 In this chapter, you’ll see how to employ common integration patterns with Spring
Integration. Spring Integration is a ready-to-use implementation of many of the inte-
gration patterns that are catalogued in Enterprise Integration Patterns by Gregor Hohpe
and Bobby Woolf (Addison-Wesley, 2003). Each pattern is implemented as a compo-
nent through which messages ferry data in a pipeline. Using Spring configuration,
you can assemble these components into a pipeline through which data flows. Let’s
get started by defining a simple integration flow that introduces many of the features
and characteristics of working with Spring Integration.

10.1 Declaring a simple integration flow
Generally speaking, Spring Integration enables the creation of integration flows
through which an application can receive or send data to some resource external to
the application itself. One such resource that an application may integrate with is the
filesystem. Therefore, among Spring Integration’s many components are channel
adapters for reading and writing files.

 To get your feet wet with Spring Integration, you’re going to create an integration
flow that writes data to the filesystem. To get started, you need to add Spring Integra-
tion to your project build. For Maven, the necessary dependencies follow:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-integration</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-file</artifactId>
</dependency>

The first dependency is the Spring Boot starter for Spring Integration. This depen-
dency is essential to developing a Spring Integration flow, regardless of what the flow
may integrate with. Like all Spring Boot starter dependencies, it’s available as a check
box in the Initializr1 form.

 The second dependency is for Spring Integration’s file endpoint module. This
module is one of over two dozen endpoint modules used to integrate with external
systems. We’ll talk more about the endpoint modules in section 10.2.9. But, for now,
know that the file endpoint module offers the ability to ingest files from the filesystem
into an integration flow and/or to write data from a flow to the filesystem.

 Next you need to create a way for the application to send data into an integration
flow so that it can be written to a file. To do that, you’ll create a gateway interface,
such as the one shown next.

1 See https://start.spring.io/.

https://start.spring.io/

245Declaring a simple integration flow
package sia6;

import org.springframework.integration.annotation.MessagingGateway;
import org.springframework.integration.file.FileHeaders;
import org.springframework.messaging.handler.annotation.Header;

@MessagingGateway(defaultRequestChannel="textInChannel")
public interface FileWriterGateway {

 void writeToFile(
 @Header(FileHeaders.FILENAME) String filename,
 String data);

}

Although it’s a simple Java interface, there’s a lot to be said about FileWriterGateway.
The first thing you’ll notice is that it’s annotated with @MessagingGateway. This anno-
tation tells Spring Integration to generate an implementation of this interface at run
time—similar to how Spring Data automatically generates implementations of reposi-
tory interfaces. Other parts of the code will use this interface when they need to
write a file.

 The defaultRequestChannel attribute of @MessagingGateway indicates that any
messages resulting from a call to the interface methods should be sent to the given
message channel. In this case, you state that any messages that result from a call to
writeToFile() should be sent to the channel whose name is textInChannel.

 As for the writeToFile() method, it accepts a filename as a String, and another
String that will contain the text should be written to a file. What’s notable about this
method signature is that the filename parameter is annotated with @Header. In this
case, the @Header annotation indicates that the value passed to filename should be
placed in a message header (specified as FileHeaders.FILENAME, which is a constant
in the FileHeaders class that is equal to the value "file_name") rather than in the
message payload. The data parameter value, on the other hand, is carried in the mes-
sage payload.

 Now that you’ve created a message gateway, you need to configure the integration
flow. Although the Spring Integration starter dependency that you added to your
build enables essential autoconfiguration for Spring Integration, it’s still up to you to
write additional configurations to define flows that meet the needs of the application.
Three configuration options for declaring integration flows follow:

 XML configuration
 Java configuration
 Java configuration with a DSL

We’ll take a look at all three of these configuration styles for Spring Integration, start-
ing with the old-timer, XML configuration.

Listing 10.1 Message gateway interface to transform method invocations into messages

Declares a
message gateway

Writes to
a file

246 CHAPTER 10 Integrating Spring
10.1.1 Defining integration flows with XML

Although I’ve avoided using XML configuration in this book, Spring Integration has a
long history of integration flows defined in XML. Therefore, I think it’s worthwhile
for me to show at least one example of an XML-defined integration flow. The follow-
ing listing shows how to configure your sample flow in XML.

<?xml version="1.0" encoding="UTF-8"?><beans
xmlns="http:/ /www.springframework.org/schema/beans"

 xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http:/ /www.springframework.org/schema/integration"
 xmlns:int-file="http:/ /www.springframework.org/schema/integration/file"
 xsi:schemaLocation="http:/ /www.springframework.org/schema/beans
 http:/ /www.springframework.org/schema/beans/spring-beans.xsd
 http:/ /www.springframework.org/schema/integration
 http:/ /www.springframework.org/schema/integration/spring-integration.xsd
 http:/ /www.springframework.org/schema/integration/file
 http:/ /www.springframework.org/schema/integration/file/spring-

integration-file.xsd">

 <int:channel id="textInChannel" />

 <int:transformer id="upperCase"
 input-channel="textInChannel"
 output-channel="fileWriterChannel"
 expression="payload.toUpperCase()" />

 <int:channel id="fileWriterChannel" />

 <int-file:outbound-channel-adapter id="writer"
 channel="fileWriterChannel"
 directory="/tmp/sia6/files"
 mode="APPEND"
 append-new-line="true" />

</beans>

Breaking down the XML in listing 10.2, we get the following:

 You configured a channel named textInChannel. You’ll recognize this as the
same channel that’s set as the request channel for FileWriterGateway. When
the writeToFile() method is called on FileWriterGateway, the resulting mes-
sage is published to this channel.

 You configured a transformer that receives messages from textInChannel. It
uses a Spring Expression Language (SpEL) expression to call toUpperCase()
on the message payload. The result of the uppercase operation is then pub-
lished to fileWriterChannel.

 You configured the channel named fileWriterChannel. This channel serves as
the conduit that connects the transformer with the outbound channel adapter.

Listing 10.2 Defining an integration flow with Spring XML configuration

Declares
textInChannel

Transforms
the text

Declares
fileWriterChannel

Writes the
text to a file

247Declaring a simple integration flow
 Finally, you configured an outbound channel adapter using the int-file
namespace. This XML namespace is provided by Spring Integration’s file mod-
ule to write files. As you configured it, it receives messages from fileWriter-
Channel and writes the message payload to a file whose name is specified in the
message’s "file_name" header in the directory specified in the directory attri-
bute. If the file already exists, the file will be appended with a newline rather
than be overwritten.

This flow is illustrated in figure 10.1 using graphical elements styled after those in
Enterprise Integration Patterns.

The flow comprises five components: a gateway, two channels, a transformer, and a
channel adapter. These are just a few of the components that can be assembled into
an integration flow. We’ll explore these components and others supported by Spring
Integration in section 10.2.

 If you want to use XML configuration in a Spring Boot application, you’ll need to
import the XML as a resource into the Spring application. The easiest way to do this is
to use Spring’s @ImportResource annotation, shown in the next code sample, on one
of your application’s Java configuration classes:

@Configuration
@ImportResource("classpath:/filewriter-config.xml")
public class FileWriterIntegrationConfig { ... }

Although XML-based configuration has served Spring Integration well, most develop-
ers have grown wary of using XML. (And, as I said, I’m avoiding XML configuration in
this book.) Let’s set aside those angle brackets and turn our attention to Spring Inte-
gration’s Java configuration style.

10.1.2 Configuring integration flows in Java

Most modern Spring applications have eschewed XML configuration in favor of Java
configuration. In fact, in Spring Boot applications, Java configuration is a natural style
to complement autoconfiguration. Therefore, if you’re adding an integration flow to
a Spring Boot application, it makes perfect sense to define the flow in Java.

File writer

gateway

T inext

channel

Uppercase

transformer

File writer

channel

File outbound

channel adapter

Figure 10.1 The file writer integration flow

248 CHAPTER 10 Integrating Spring
 As a sample of how to write an integration flow with Java configuration, take a look
at the next listing. This shows the same file-writing integration flow as before, but this
time it’s written in Java.

package sia6;

import java.io.File;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.annotation.Transformer;
import org.springframework.integration.file.FileWritingMessageHandler;
import org.springframework.integration.file.support.FileExistsMode;
import org.springframework.integration.transformer.GenericTransformer;

@Configuration
public class FileWriterIntegrationConfig {

 @Bean
 @Transformer(inputChannel="textInChannel",
 outputChannel="fileWriterChannel")
 public GenericTransformer<String, String> upperCaseTransformer() {
 return text -> text.toUpperCase();
 }

 @Bean
 @ServiceActivator(inputChannel="fileWriterChannel")
 public FileWritingMessageHandler fileWriter() {
 FileWritingMessageHandler handler =
 new FileWritingMessageHandler(new File("/tmp/sia6/files"));
 handler.setExpectReply(false);
 handler.setFileExistsMode(FileExistsMode.APPEND);
 handler.setAppendNewLine(true);
 return handler;
 }

}

With Java configuration, you declare two beans: a transformer and a file-writing mes-
sage handler. The transformer is a GenericTransformer. Because GenericTransformer
is a functional interface, you’re able to provide its implementation as a lambda that
calls toUpperCase() on the message text. The transformer bean is annotated with
@Transformer, designating it as a transformer in the integration flow that receives
messages on a channel named textInChannel and writes messages to the channel
named fileWriterChannel.

 As for the file-writing bean, it’s annotated with @ServiceActivator to indicate that
it’ll accept messages from fileWriterChannel and hand those messages over to the
service defined by an instance of FileWritingMessageHandler. FileWritingMessage-
Handler is a message handler that writes a message payload to a file in a specified

Listing 10.3 Using Java configuration to define an integration flow

Declares a
transformer

Declares a
file writer

249Declaring a simple integration flow
directory using a filename specified in the message’s “file_name” header. As with the
XML example, FileWritingMessageHandler is configured to append to the file with
a newline.

 One thing unique about the configuration of the FileWritingMessageHandler
bean is that there’s a call to setExpectReply(false) to indicate that the service activa-
tor shouldn’t expect a reply channel (a channel through which a value may be returned
to upstream components in the flow). If you don’t call setExpectReply (false), the
file-writing bean defaults to true, and, although the pipeline still functions as expected,
you’ll see a few errors logged stating that no reply channel was configured.

 You’ll also notice that you didn’t need to explicitly declare the channels. The
textInChannel and fileWriterChannel will be created automatically if no beans with
those names exist. But if you want more control over how the channels are config-
ured, you can explicitly construct them as beans like this:

@Bean
public MessageChannel textInChannel() {
 return new DirectChannel();
}
...
@Bean
public MessageChannel fileWriterChannel() {
 return new DirectChannel();
}

The Java configuration option is arguably easier to read—and slightly briefer—and is
certainly consistent with the Java-only configuration I’m shooting for in this book. But
it can be made even more streamlined with Spring Integration’s Java DSL (domain-
specific language) configuration style.

10.1.3 Using Spring Integration’s DSL configuration

Let’s take one more stab at defining the file-writing integration flow. This time, you’ll
still define it in Java, but you’ll use Spring Integration’s Java DSL. Rather than declare
an individual bean for each component in the flow, you’ll declare a single bean that
defines the entire flow.

package sia6;

import java.io.File;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.MessageChannels;
import org.springframework.integration.file.dsl.Files;
import org.springframework.integration.file.support.FileExistsMode;

Listing 10.4 Providing a fluent API for designing integration flows

250 CHAPTER 10 Integrating Spring
@Configuration
public class FileWriterIntegrationConfig {

 @Bean
 public IntegrationFlow fileWriterFlow() {
 return IntegrationFlows
 .from(MessageChannels.direct("textInChannel"))
 .<String, String>transform(t -> t.toUpperCase())
 .handle(Files
 .outboundAdapter(new File("/tmp/sia6/files"))
 .fileExistsMode(FileExistsMode.APPEND)
 .appendNewLine(true))
 .get();
 }

}

This new configuration is as terse as it can possibly be, capturing the entire flow in a
single bean method. The IntegrationFlows class initiates the builder API, from
which you can declare the flow.

 In listing 10.4, you start by receiving messages from the channel named textIn-
Channel, which then go to a transformer that uppercases the message payload. After
the transformer, messages are handled by an outbound channel adapter created from
the Files type provided in Spring Integration’s file module. Finally, a call to get()
builds the IntegrationFlow to be returned. In short, this single bean method defines
the same integration flow as the XML and Java configuration examples.

 You’ll notice that, as with the Java configuration example, you don’t need to explic-
itly declare channel beans. Although you reference textInChannel, it’s automatically
created by Spring Integration because there’s no existing channel bean with that
name. But you can explicitly declare the channel bean if you want.

 As for the channel that connects the transformer to the outbound channel
adapter, you don’t even reference it by name. If there’s a need to explicitly configure
the channel, you can reference it by name in the flow definition with a call to channel()
as follows:

@Bean
public IntegrationFlow fileWriterFlow() {
 return IntegrationFlows
 .from(MessageChannels.direct("textInChannel"))
 .<String, String>transform(t -> t.toUpperCase())
 .channel(MessageChannels.direct("FileWriterChannel"))
 .handle(Files
 .outboundAdapter(new File("/tmp/sia6/files"))
 .fileExistsMode(FileExistsMode.APPEND)
 .appendNewLine(true))
 .get();
}

Inbound
channel

Declares a
transformer

Handles
writing to a file

251Surveying the Spring Integration landscape
One thing to keep in mind when working with Spring Integration’s Java DSL (as with
any fluent API) is that you must employ whitespace shrewdly to maintain readability.
In the example given here, I’ve been careful to indent lines to indicate blocks of
related code. For even longer, more complex flows, you may even consider extracting
portions of the flow into separate methods or subflows for better readability.

 Now that you’ve seen a simple flow defined using three different configuration
styles, let’s step back and take a look at Spring Integration’s big picture.

10.2 Surveying the Spring Integration landscape
Spring Integration covers a lot of ground with a multitude of integration scenarios.
Trying to include all of it in a single chapter would be like trying to fit an elephant in
an envelope. Instead of a comprehensive treatment of Spring Integration, I’ll present
a photograph of the Spring Integration elephant to give you some idea of how it
works. Then you’ll create one more integration flow that adds functionality to the
Taco Cloud application.

 An integration flow is composed of one or more of the following components.
Before you write any more code, we’ll take a brief look at the role each of these com-
ponents plays in an integration flow:

 Channel—Passes messages from one element to another
 Filter—Conditionally allows messages to pass through the flow based on some

criteria
 Transformer—Changes message values and/or converts message payloads from

one type to another
 Router—Directs messages to one of several channels, typically based on message

headers
 Splitter—Splits incoming messages into two or more messages, each sent to dif-

ferent channels
 Aggregator—The opposite of a splitter; combines multiple messages coming in

from separate channels into a single message
 Service activator—Hands a message off to some Java method for processing, and

then publishes the return value on an output channel
 Channel adapter—Connects a channel to some external system or transport; can

either accept input or write to the external system
 Gateway—Passes data into an integration flow via an interface

You’ve already seen a few of these components in play when you defined the file-
writing integration flow. The FileWriterGateway interface was the gateway through
which an application submitted text to be written to a file. You also defined a trans-
former to convert the given text to uppercase; then you declared a service gateway
that performed the task of writing the text to a file. And the flow had two channels,
textInChannel and fileWriterChannel, that connected the other components with
each other. Now, a quick tour of the integration flow components, as promised.

252 CHAPTER 10 Integrating Spring
10.2.1 Message channels

Message channels are the means by which messages move through an integration
pipeline, as shown in figure 10.2. They’re the pipes that connect all the other parts of
Spring Integration plumbing together.

Spring Integration provides several channel implementations, including the following:

 PublishSubscribeChannel—Messages published into a PublishSubscribe-
Channel are passed on to one or more consumers. If multiple consumers exist,
all of them receive the message.

 QueueChannel—Messages published into a QueueChannel are stored in a queue
until pulled by a consumer in a first in, first out (FIFO) fashion. If multiple con-
sumers exist, only one of them receives the message.

 PriorityChannel—Like QueueChannel but, rather than FIFO behavior, mes-
sages are pulled by consumers based on the message priority header.

 RendezvousChannel—Like QueueChannel except that the sender blocks the
channel until a consumer receives the message, effectively synchronizing the
sender with the consumer.

 DirectChannel—Like PublishSubscribeChannel, but sends a message to a sin-
gle consumer by invoking the consumer in the same thread as the sender. This
allows for transactions to span across the channel.

 ExecutorChannel—Similar to DirectChannel, but the message dispatch occurs
via a TaskExecutor, taking place in a thread separate from the sender. This chan-
nel type doesn’t support transactions that span the channel.

 FluxMessageChannel—A Reactive Streams Publisher message channel based on
Project Reactor’s Flux. (We’ll talk more about Reactive Streams, Reactor, and
Flux in chapter 11.)

In both the Java configuration and Java DSL styles, input channels are automatically
created, with DirectChannel as the default. But if you want to use a different channel
implementation, you’ll need to explicitly declare the channel as a bean and reference
it in the integration flow. For example, to declare a PublishSubscribeChannel, you’d
declare the following @Bean method:

@Bean
public MessageChannel orderChannel() {
 return new PublishSubscribeChannel();
}

Channel

Figure 10.2 Message channels are conduits
through which data flows between other
components in an integration flow.

253Surveying the Spring Integration landscape
Then you’d reference this channel by name in the integration flow definition. For
example, if the channel were being consumed by a service activator bean, you’d refer-
ence it in the inputChannel attribute of @ServiceActivator like so:

@ServiceActivator(inputChannel="orderChannel")

Or, if you’re using the Java DSL configuration style, you’d reference it with a call to
channel() as follows:

@Bean
public IntegrationFlow orderFlow() {
 return IntegrationFlows
 ...
 .channel("orderChannel")
 ...
 .get();
}

It’s important to note that if you’re using QueueChannel, the consumers must be
configured with a poller. For instance, suppose that you’ve declared a QueueChannel
bean like this:

@Bean
public MessageChannel orderChannel() {
 return new QueueChannel();
}

You’d need to make sure that the consumer is configured to poll the channel for mes-
sages. In the case of a service activator, the @ServiceActivator annotation might look
like this:

@ServiceActivator(inputChannel="orderChannel",
 poller=@Poller(fixedRate="1000"))

In this example, the service activator polls from the channel named orderChannel
every 1 second (or 1,000 ms).

10.2.2 Filters

You can place filters in the midst of an integration pipeline to allow or disallow mes-
sages from proceeding to the next step in the flow, as shown in figure 10.3.

Filter

Figure 10.3 Filters based on some criteria allow or
disallow messages from proceeding in the pipeline.

254 CHAPTER 10 Integrating Spring
For example, suppose that messages containing integer values are published through
a channel named numberChannel, but you want only even numbers to pass on to the
channel named evenNumberChannel. In that case, you could declare a filter with
the @Filter annotation like this:

@Filter(inputChannel="numberChannel",
 outputChannel="evenNumberChannel")
public boolean evenNumberFilter(Integer number) {
 return number % 2 == 0;
}

Alternatively, if you’re using the Java DSL configuration style to define your integra-
tion flow, you could make a call to filter() like this:

@Bean
public IntegrationFlow evenNumberFlow(AtomicInteger integerSource) {
 return IntegrationFlows
 ...
 .<Integer>filter((p) -> p % 2 == 0)
 ...
 .get();
}

In this case, you use a lambda to implement the filter. But, in truth, the filter()
method accepts a GenericSelector as an argument. This means that you can imple-
ment the GenericSelector interface instead, should your filtering needs be too involved
for a simple lambda.

10.2.3 Transformers

Transformers perform some operation on messages, typically resulting in a different
message and, possibly, with a different payload type (see figure 10.4). The transforma-
tion can be something simple, such as performing mathematic operations on a num-
ber or manipulating a String value. Or the transformation can be more complex,
such as using a String value representing an ISBN to look up and return details of the
corresponding book.

For example, suppose that integer values are being published on a channel named
numberChannel, and you want to convert those numbers to a String containing the
Roman numeral equivalent. In that case, you can declare a bean of type Generic-
Transformer and annotate it with @Transformer as follows:

Transformer

Figure 10.4 Transformers morph messages
as they flow through an integration flow.

255Surveying the Spring Integration landscape
@Bean
@Transformer(inputChannel="numberChannel",
 outputChannel="romanNumberChannel")
public GenericTransformer<Integer, String> romanNumTransformer() {
 return RomanNumbers::toRoman;
}

The @Transformer annotation designates this bean as a transformer bean that receives
Integer values from the channel named numberChannel and uses a static method
named toRoman() to do the conversion. (The toRoman() method is statically defined
in a class named RomanNumbers and referenced here with a method reference.) The
result is published to the channel named romanNumberChannel.

 In the Java DSL configuration style, it’s even easier with a call to transform(), pass-
ing in the method reference to the toRoman() method as follows:

@Bean
public IntegrationFlow transformerFlow() {
 return IntegrationFlows
 ...
 .transform(RomanNumbers::toRoman)
 ...
 .get();
}

Although you’ve used a method reference in both of the transformer code samples,
know that the transformer can also be specified as a lambda. Or, if the transformer is
complex enough to warrant a separate Java class, you can inject it as a bean into the
flow configuration and pass the reference to the transform() method like so:

@Bean
public RomanNumberTransformer romanNumberTransformer() {
 return new RomanNumberTransformer();
}

@Bean
public IntegrationFlow transformerFlow(
 RomanNumberTransformer romanNumberTransformer) {
 return IntegrationFlows
 ...
 .transform(romanNumberTransformer)
 ...
 .get();
}

Here, you declare a bean of type RomanNumberTransformer, which itself is an imple-
mentation of Spring Integration’s Transformer or GenericTransformer interfaces. The
bean is injected into the transformerFlow() method and passed to the transform()
method when defining the integration flow.

256 CHAPTER 10 Integrating Spring
10.2.4 Routers

Routers, based on some routing criteria, allow for branching in an integration flow,
directing messages to different channels (see figure 10.5).

For example, suppose that you have a channel named numberChannel through which
integer values flow. And let’s say that you want to direct all messages with even num-
bers to a channel named evenChannel, whereas messages with odd numbers are
routed to a channel named oddChannel. To create such a routing in your integration
flow, you can declare a bean of type AbstractMessageRouter and annotate the bean
with @Router, as shown next:

@Bean
@Router(inputChannel="numberChannel")
public AbstractMessageRouter evenOddRouter() {
 return new AbstractMessageRouter() {
 @Override
 protected Collection<MessageChannel>
 determineTargetChannels(Message<?> message) {
 Integer number = (Integer) message.getPayload();
 if (number % 2 == 0) {
 return Collections.singleton(evenChannel());
 }
 return Collections.singleton(oddChannel());
 }
 };
}

@Bean
public MessageChannel evenChannel() {
 return new DirectChannel();
}

@Bean
public MessageChannel oddChannel() {
 return new DirectChannel();
}

The AbstractMessageRouter bean declared here accepts messages from an input
channel named numberChannel. The implementation, defined as an anonymous
inner class, examines the message payload, and, if it’s an even number, returns the
channel named evenChannel (declared as a bean after the router bean). Otherwise,

Router

Figure 10.5 Routers direct messages to
different channels, based on some criteria
applied to the messages.

257Surveying the Spring Integration landscape
the number in the channel payload must be odd, in which case, the channel named
oddChannel is returned (also declared in a bean declaration method).

 In Java DSL form, routers are declared by calling route() in the course of a flow
definition, as shown here:

@Bean
public IntegrationFlow numberRoutingFlow(AtomicInteger source) {
 return IntegrationFlows
 ...
 .<Integer, String>route(n -> n%2==0 ? "EVEN":"ODD", mapping -> mapping
 .subFlowMapping("EVEN", sf -> sf
 .<Integer, Integer>transform(n -> n * 10)
 .handle((i,h) -> { ... })
)
 .subFlowMapping("ODD", sf -> sf
 .transform(RomanNumbers::toRoman)
 .handle((i,h) -> { ... })
)
)
 .get();
}

Although it’s still possible to declare an AbstractMessageRouter and pass it into
route(), this example uses a lambda to determine whether a message payload is odd or
even. If it’s even, then a String value of EVEN is returned. If it’s odd, then ODD is returned.
These values are then used to determine which submapping will handle the message.

10.2.5 Splitters

At times in an integration flow, it can be useful to split a message into multiple mes-
sages to be handled independently. Splitters, as illustrated in figure 10.6, will split and
handle those messages for you.

Splitters are useful in many circumstances, but you might use a splitter for the follow-
ing two essential use cases:

 A message payload contains a collection of items of the same type that you’d like to process
as individual message payloads. For example, a message carrying a list of products
might be split into multiple messages with payloads of one product each.

 A message payload carries information that, although related, can be split into two or
more messages of different types. For example, a purchase order might carry delivery,

Splitter

Figure 10.6 Splitters break down messages
into two or more separate messages that can
be handled by separate subflows.

258 CHAPTER 10 Integrating Spring
billing, and line-item information. The delivery details might be processed by
one subflow, billing by another, and line items in yet another. In this use case,
the splitter is typically followed by a router that routes messages by payload type
to ensure that the data is handled by the right subflow.

When splitting a message payload into two or more messages of different types, it’s
usually sufficient to define a POJO that extracts the individual pieces of the incoming
payload and returns them as elements of a collection.

 For example, suppose that you want to split a message carrying a purchase order
into two messages: one carrying the billing information and another carrying a list of
line items. The following OrderSplitter will do the job:

public class OrderSplitter {
 public Collection<Object> splitOrderIntoParts(PurchaseOrder po) {
 ArrayList<Object> parts = new ArrayList<>();
 parts.add(po.getBillingInfo());
 parts.add(po.getLineItems());
 return parts;
 }
}

You can then declare an OrderSplitter bean as part of the integration flow by anno-
tating it with @Splitter like this:

@Bean
@Splitter(inputChannel="poChannel",
 outputChannel="splitOrderChannel")
public OrderSplitter orderSplitter() {
 return new OrderSplitter();
}

Here, purchase orders arrive on the channel named poChannel and are split by
OrderSplitter. Then, each item in the returned collection is published as a separate
message in the integration flow to a channel named splitOrderChannel. At this point
in the flow, you can declare a PayloadTypeRouter to route the billing information and
the line items to their own subflow as follows:

@Bean
@Router(inputChannel="splitOrderChannel")
public MessageRouter splitOrderRouter() {
 PayloadTypeRouter router = new PayloadTypeRouter();
 router.setChannelMapping(
 BillingInfo.class.getName(), "billingInfoChannel");
 router.setChannelMapping(
 List.class.getName(), "lineItemsChannel");
 return router;
}

As its name implies, PayloadTypeRouter routes messages to different channels based on
their payload type. As configured here, messages whose payload is of type BillingInfo

259Surveying the Spring Integration landscape
are routed to a channel named billingInfoChannel for further processing. As for
the line items, they’re in a java.util.List collection; therefore, you map payloads of
type List to be routed to a channel named lineItemsChannel.

 As things stand, the flow splits into two subflows: one through which BillingInfo
objects flow and another through which a List<LineItem> flows. But what if you want to
break it down further such that instead of dealing with a List of LineItem objects, you
process each LineItem separately? All you need to do to split the line-item list into multi-
ple messages, one for each line item, is write a method (not a bean) that’s annotated with
@Splitter and returns a collection of LineItem objects, perhaps something like this:

@Splitter(inputChannel="lineItemsChannel", outputChannel="lineItemChannel")
public List<LineItem> lineItemSplitter(List<LineItem> lineItems) {
 return lineItems;
}

When a message carrying a payload of List<LineItem> arrives in the channel named
lineItemsChannel, it passes into the lineItemSplitter() method. Per the rules of a
splitter, the method must return a collection of the items to be split. In this case, you
already have a collection of LineItem objects, so you just return the collection directly.
As a result, each LineItem in the collection is published in a message of its own to the
channel named lineItemChannel.

 If you’d rather use the Java DSL to declare the same splitter/router configuration,
you can do so with calls to split() and route() as shown here:

return IntegrationFlows
 ...
 .split(orderSplitter())
 .<Object, String> route(
 p -> {
 if (p.getClass().isAssignableFrom(BillingInfo.class)) {
 return "BILLING_INFO";
 } else {
 return "LINE_ITEMS";
 }
 }, mapping -> mapping
 .subFlowMapping("BILLING_INFO", sf -> sf
 .<BillingInfo> handle((billingInfo, h) -> {
 ...
 }))
 .subFlowMapping("LINE_ITEMS", sf -> sf
 .split()
 .<LineItem> handle((lineItem, h) -> {
 ...
 }))

)
 .get();

The DSL form of the flow definition is certainly terser, if not arguably a bit more diffi-
cult to follow. We could clean this up a bit by extracting the lambdas to methods. For

260 CHAPTER 10 Integrating Spring
example, we could use the following three methods to replace the lambdas used in
the flow definition:

private String route(Object p) {
 return p.getClass().isAssignableFrom(BillingInfo.class)
 ? "BILLING_INFO"
 : "LINE_ITEMS";
}

private BillingInfo handleBillingInfo(
 BillingInfo billingInfo, MessageHeaders h) {
 // ...
}

private LineItem handleLineItems(
 LineItem lineItem, MessageHeaders h) {
 // ...
}

Then, we could rewrite the integration flow with method references like this:

return IntegrationFlows
 ...
 .split()
 .route(
 this::route,
 mapping -> mapping
 .subFlowMapping("BILLING_INFO", sf -> sf
 .<BillingInfo> handle(this::handleBillingInfo))
 .subFlowMapping("LINE_ITEMS", sf -> sf
 .split()
 .<LineItem> handle(this::handleLineItems)));

Either way, this uses the same OrderSplitter to split the order as the Java configura-
tion example. After the order is split, it’s routed by its type to two separate subflows.

10.2.6 Service activators

Service activators receive messages from an input channel and send those messages to
an implementation of MessageHandler, as shown in figure 10.7.

Service

activator

Invoke a

service

Figure 10.7 Service activators invoke some
service by way of a MessageHandler on
receipt of a message.

261Surveying the Spring Integration landscape
Spring Integration offers several MessageHandler implementations out of the box
(even PayloadTypeRouter is an implementation of MessageHandler), but you’ll often
need to provide some custom implementation to act as a service activator. As an exam-
ple, the following code shows how to declare a MessageHandler bean, configured to
be a service activator:

@Bean
@ServiceActivator(inputChannel="someChannel")
public MessageHandler sysoutHandler() {
 return message -> {
 System.out.println("Message payload: " + message.getPayload());
 };
}

The bean is annotated with @ServiceActivator to designate it as a service activator
that handles messages from the channel named someChannel. As for the Message-
Handler itself, it’s implemented via a lambda. Although it’s a simple MessageHandler,
when given a Message, it emits its payload to the standard output stream.

 Alternatively, you could declare a service activator that processes the data in the
incoming message before returning a new payload, as shown in the next code snippet.
In that case, the bean should be a GenericHandler rather than a MessageHandler.

@Bean
@ServiceActivator(inputChannel="orderChannel",
 outputChannel="completeChannel")
public GenericHandler<EmailOrder> orderHandler(
 OrderRepository orderRepo) {
 return (payload, headers) -> {
 return orderRepo.save(payload);
 };
}

In this case, the service activator is a GenericHandler that expects messages with
a payload of type EmailOrder. When the order arrives, it’s saved via a repository; the
resulting saved EmailOrder is returned to be sent to the output channel whose name
is completeChannel.

 You may notice that a GenericHandler is given not only the payload but also the mes-
sage headers (even if the example doesn’t use those headers in any way). If you prefer,
you can also use service activators in the Java DSL configuration style by passing a
MessageHandler or GenericHandler to handle() in the flow definition as follows:

public IntegrationFlow someFlow() {
 return IntegrationFlows
 ...
 .handle(msg -> {
 System.out.println("Message payload: " + msg.getPayload());
 })
 .get();
}

262 CHAPTER 10 Integrating Spring
In this case, the MessageHandler is given as a lambda, but you could also provide it as
a method reference or even as an instance of a class that implements the Message-
Handler interface. If you give it a lambda or method reference, be aware that it
accepts a message as a parameter.

 Similarly, handle() can be written to accept a GenericHandler if the service activa-
tor isn’t intended to be the end of the flow. Applying the order-saving service activator
from before, you could configure the flow with the Java DSL like this:

public IntegrationFlow orderFlow(OrderRepository orderRepo) {
 return IntegrationFlows
 ...
 .<EmailOrder>handle((payload, headers) -> {
 return orderRepo.save(payload);
 })
 ...
 .get();
}

When working with a GenericHandler, the lambda or method reference accepts the
message payload and headers as parameters. Also, if you choose to use Generic-
Handler at the end of a flow, you’ll need to return null, or else you’ll get errors indi-
cating that there’s no output channel specified.

10.2.7 Gateways

Gateways are the means by which an application can submit data into an integration
flow and, optionally, receive a response that’s the result of the flow. Implemented by
Spring Integration, gateways are realized as interfaces that the application can call to
send messages to the integration flow (see figure 10.8).

You’ve already seen an example of a message gateway with FileWriterGateway. File-
WriterGateway was a one-way gateway with a method accepting a String to write to a
file, returning void. It’s just about as easy to write a two-way gateway. When writing the
gateway interface, be sure that the method returns some value to publish into the inte-
gration flow.

Ga atew y

A
p
p
lic

a
ti
o
n

Channel

…

Integration owfl

Figure 10.8 Service gateways
are interfaces through which an
application can submit messages
to an integration flow.

263Surveying the Spring Integration landscape
 As an example, imagine a gateway that fronts a simple integration flow that accepts
a String and translates the given String to all uppercase. The gateway interface
might look something like this:

package sia6;
import org.springframework.integration.annotation.MessagingGateway;
import org.springframework.stereotype.Component;

@Component
@MessagingGateway(defaultRequestChannel="inChannel",
 defaultReplyChannel="outChannel")
public interface UpperCaseGateway {
 String uppercase(String in);
}

What’s amazing about this interface is that it’s not necessary to implement it. Spring
Integration automatically provides an implementation at run time that sends and
receives data through the specified channels.

 When uppercase() is called, the given String is published to the integration flow
into the channel named inChannel. Regardless of how the flow is defined or what it
does, when data arrives in the channel named outChannel, it’s returned from the
uppercase() method.

 As for the uppercase integration flow, it’s a simplistic integration flow with only a
single step to transform the String to uppercase. Here, it’s expressed in the Java DSL
configuration:

@Bean
public IntegrationFlow uppercaseFlow() {
 return IntegrationFlows
 .from("inChannel")
 .<String, String> transform(s -> s.toUpperCase())
 .channel("outChannel")
 .get();
}

As defined here, the flow starts with data coming into the channel named inChannel.
The message payload is then transformed by the transformer, which is defined here as
a lambda expression, to perform an uppercase operation. The resulting message is
then published to the channel named outChannel, which is what you’ve declared as
the reply channel for the UpperCaseGateway interface.

10.2.8 Channel adapters

Channel adapters represent the entry and exit points of an integration flow. Data
enters an integration flow by way of an inbound channel adapter and exits an integra-
tion flow by way of an outbound channel adapter. This is illustrated in figure 10.9.

 Inbound channel adapters can take many forms, depending on the source of the
data they introduce into the flow. For example, you might declare an inbound channel

264 CHAPTER 10 Integrating Spring
adapter that introduces incrementing numbers from an AtomicInteger2 into the flow.
Using Java configuration, it might look like this:

@Bean
@InboundChannelAdapter(
 poller=@Poller(fixedRate="1000"), channel="numberChannel")
public MessageSource<Integer> numberSource(AtomicInteger source) {
 return () -> {
 return new GenericMessage<>(source.getAndIncrement());
 };
}

This @Bean method declares an inbound channel adapter bean which, per the
@InboundChannelAdapter annotation, submits a number from the injected Atomic-
Integer to the channel named numberChannel every 1 second (or 1,000 ms).

 Whereas @InboundChannelAdapter indicates an inbound channel adapter when
using Java configuration, the from() method is how it’s done when using the Java DSL
to define the integration flow. The following snippet of a flow definition shows a simi-
lar inbound channel adapter as defined in the Java DSL:

@Bean
public IntegrationFlow someFlow(AtomicInteger integerSource) {
 return IntegrationFlows
 .from(integerSource, "getAndIncrement",
 c -> c.poller(Pollers.fixedRate(1000)))
 ...
 .get();
}

Often, channel adapters are provided by one of Spring Integration’s many endpoint
modules. Suppose, for example, that you need an inbound channel adapter that
monitors a specified directory and submits any files that are written to that directory
as messages to a channel named file-channel. The following Java configuration
uses FileReadingMessageSource from Spring Integration’s file endpoint module to
achieve that:

2 AtomicInteger is useful for incrementing a counter in a multithreaded situation, such as the one here
where multiple messages may arrive on the channel simultaneously.

Inbound

channel adapter

…

Outbound

channel adapter
Integration

flow

Figure 10.9 Channel adapters
are the entry and exit points of
an integration flow.

265Surveying the Spring Integration landscape
@Bean
@InboundChannelAdapter(channel="file-channel",
 poller=@Poller(fixedDelay="1000"))
public MessageSource<File> fileReadingMessageSource() {
 FileReadingMessageSource sourceReader = new FileReadingMessageSource();
 sourceReader.setDirectory(new File(INPUT_DIR));
 sourceReader.setFilter(new SimplePatternFileListFilter(FILE_PATTERN));
 return sourceReader;
}

When writing the equivalent file-reading inbound channel adapter in the Java DSL,
the inboundAdapter() method from the Files class achieves the same thing. As
shown next, an outbound channel adapter is the end of the line for the integration
flow, handing off the final message to the application or to some other system:

@Bean
public IntegrationFlow fileReaderFlow() {
 return IntegrationFlows
 .from(Files.inboundAdapter(new File(INPUT_DIR))
 .patternFilter(FILE_PATTERN))
 .get();
}

Service activators, implemented as message handlers, often serve the purpose of an
outbound channel adapter, especially when data needs to be handed off to the appli-
cation itself. We’ve already discussed service activators, so there’s no point in repeat-
ing that discussion.

 It’s worth noting, however, that Spring Integration endpoint modules provide use-
ful message handlers for several common use cases. You saw an example of such an
outbound channel adapter, FileWritingMessageHandler, in listing 10.3. Speaking of
Spring Integration endpoint modules, let’s take a quick look at what ready-to-use inte-
gration endpoint modules are available.

10.2.9 Endpoint modules

It’s great that Spring Integration lets you create your own channel adapters. But
what’s even better is that Spring Integration provides more than two dozen endpoint
modules containing channel adapters—both inbound and outbound—for integration
with a variety of common external systems, including those listed in table 10.1.

Table 10.1 Spring Integration provides more than two dozen endpoint modules for
integration with external systems.

Module
Dependency artifact ID (Group ID:

org.springframework.integration)

AMQP spring-integration-amqp

Application events spring-integration-event

Atom and RSS spring-integration-feed

266 CHAPTER 10 Integrating Spring
One thing that’s clear from looking at table 10.1 is that Spring Integration provides an
extensive set of components to meet many integration needs. Most applications will

Email spring-integration-mail

Filesystem spring-integration-file

FTP/FTPS spring-integration-ftp

GemFire spring-integration-gemfire

HTTP spring-integration-http

JDBC spring-integration-jdbc

JMS spring-integration-jms

JMX spring-integration-jmx

JPA spring-integration-jpa

Kafka spring-integration-kafka

MongoDB spring-integration-mongodb

MQTT spring-integration-mqtt

R2DBC spring-integration-r2dbc

Redis spring-integration-redis

RMI spring-integration-rmi

RSocket spring-integration-rsocket

SFTP spring-integration-sftp

STOMP spring-integration-stomp

Stream spring-integration-stream

Syslog spring-integration-syslog

TCP/UDP spring-integration-ip

WebFlux spring-integration-webflux

Web Services spring-integration-ws

WebSocket spring-integration-websocket

XMPP spring-integration-xmpp

ZeroMQ spring-integration-zeromq

ZooKeeper spring-integration-zookeeper

Table 10.1 Spring Integration provides more than two dozen endpoint modules for
integration with external systems. (continued)

Module
Dependency artifact ID (Group ID:

org.springframework.integration)

267Creating an email integration flow
never need even a fraction of what Spring Integration offers. But it’s good to know
that Spring Integration has you covered if you need any of these components.

 What’s more, it would be impossible to cover all the channel adapters afforded by
the modules listed in table 10.1 in the space of this chapter. You’ve already seen exam-
ples that use the filesystem module to write to the filesystem. And you’re soon going to
use the email module to read emails.

 Each of the endpoint modules offers channel adapters that can be either declared
as beans when using Java configuration or referenced via static methods when using
Java DSL configuration. I encourage you to explore any of the other endpoint mod-
ules that interest you most. You’ll find that they’re fairly consistent in how they’re
used. But for now, let’s turn our attention to the email endpoint module to see how
you might use it in the Taco Cloud application.

10.3 Creating an email integration flow
You’ve decided that Taco Cloud should enable its customers to submit their taco
designs and place orders by email. You send out flyers and place takeout ads in news-
papers inviting everyone to send in their taco orders by email. It’s a tremendous suc-
cess! Unfortunately, it’s a bit too successful. There are so many emails coming in that
you have to hire temporary help to do nothing more than read all the emails and sub-
mit order details into the ordering system.

 In this section, you’ll implement an integration flow that polls the Taco Cloud
inbox for taco order emails, parses the emails for order details, and submits the orders
to Taco Cloud for handling. In short, the integration flow you’re going to need will
use an inbound channel adapter from the email endpoint module to ingest emails
from the Taco Cloud inbox into the integration flow.

 The next step in the integration flow will parse the emails into order objects that
are handed off to another handler to submit orders to Taco Cloud’s REST API, where
they’ll be processed the same as any order. To start with, let’s define a simple configu-
ration properties class to capture the specifics of how to handle Taco Cloud emails, as
shown here:

package tacos.email;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;
import lombok.Data;

@Data
@ConfigurationProperties(prefix="tacocloud.email")
@Component
public class EmailProperties {

 private String username;
 private String password;
 private String host;
 private String mailbox;
 private long pollRate = 30000;

268 CHAPTER 10 Integrating Spring
 public String getImapUrl() {
 return String.format("imaps:/ /%s:%s@%s/%s",
 this.username, this.password, this.host, this.mailbox);
 }

}

As you can see, EmailProperties captures properties that are used to produce an
IMAP URL. The flow uses this URL to connect to the Taco Cloud email server and
poll for emails. Among the properties captured are the email user’s username and
password, as well as the hostname of the IMAP server, the mailbox to poll, and the rate
at which the mailbox is polled (which defaults to every 30 seconds).

 The EmailProperties class is annotated at the class level with @Configuration-
Properties with a prefix attribute set to tacocloud.email. This means that you can
configure the details of consuming an email in the application.yml file like this:

tacocloud:
 email:
 host: imap.tacocloud.com
 mailbox: INBOX
 username: taco-in-flow
 password: 1L0v3T4c0s
 poll-rate: 10000

Of course, the email server configuration shown here is fictional. You’ll need to tweak
it to match the email server details that you’ll be using.

 Also, you may get an “unknown property” warning in your IDE. That’s because the
IDE is looking for metadata it needs to understand what those properties mean. The
warnings won’t break the actual code, and you can ignore them if you want. Or you
can make them go away by adding the following dependency to your build (also avail-
able as a Spring Initializr option called “Spring Configuration Processor”):

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-configuration-processor</artifactId>
 <optional>true</optional>
</dependency>

This dependency includes support for automatically generating metadata for cus-
tom configuration properties such as the ones we’re using to configure the email
server details.

 Now let’s use EmailProperties to configure the integration flow. The flow you’re
aiming to create will look a little like figure 10.10.

 You have the following two options when defining this flow:

 Define it within the Taco Cloud application itself. At the end of the flow, a service
activator will call into the repositories you’ve defined to create the taco order.

 Define it as a separate application. At the end of the flow, a service activator will
send a POST request to the Taco Cloud API to submit the taco order.

269Creating an email integration flow
Whichever you choose has little bearing on the flow itself, aside from how the service
activator is implemented. But because you’re going to need some types that represent
tacos, orders, and ingredients, which are subtly different from those you’ve already
defined in the main Taco Cloud application, you’ll proceed by defining the integration
flow in a separate application to avoid any confusion with the existing domain types.

 You also have the choice of defining the flow using either XML configuration, Java
configuration, or the Java DSL. I rather like the elegance of the Java DSL, so that’s
what you’ll use. Feel free to write the flow using one of the other configuration styles if
you’re interested in a little extra challenge. For now, let’s take a look at the Java DSL
configuration for the taco order email flow as shown next.

package tacos.email;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;
import org.springframework.integration.mail.dsl.Mail;

@Configuration
public class TacoOrderEmailIntegrationConfig {

 @Bean
 public IntegrationFlow tacoOrderEmailFlow(
 EmailProperties emailProps,
 EmailToOrderTransformer emailToOrderTransformer,
 OrderSubmitMessageHandler orderSubmitHandler) {

 return IntegrationFlows
 .from(Mail.imapInboundAdapter(emailProps.getImapUrl()),
 e -> e.poller(
 Pollers.fixedDelay(emailProps.getPollRate())))
 .transform(emailToOrderTransformer)
 .handle(orderSubmitHandler)
 .get();
 }

}

Listing 10.5 Defining an integration flow to accept emails and submit them as orders

Email (IMAP)

inbound channel

adapter

Mail-to-order

transformer

Submit order

outbound channel

adapter

Figure 10.10 An integration flow to accept taco orders by email

270 CHAPTER 10 Integrating Spring
The taco order email flow, as defined in the tacoOrderEmailFlow() method, is com-
posed of the following three distinct components:

 An IMAP email inbound channel adapter—This channel adapter is created with
the IMAP URL generated from the getImapUrl() method of EmailProperties
and polls on a delay set in the pollRate property of EmailProperties. The
emails coming in are handed off to a channel connecting it to the transformer.

 A transformer that transforms an email into an order object—The transformer is
implemented in EmailToOrderTransformer, which is injected into the taco-
OrderEmailFlow() method. The orders resulting from the transformation are
handed off to the final component through another channel.

 A handler (acting as an outbound channel adapter)—The handler accepts an order
object and submits it to Taco Cloud’s REST API.

The call to Mail.imapInboundAdapter() is made possible by including the Email end-
point module as a dependency in your project build. The Maven dependency looks
like this:

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-mail</artifactId>
</dependency>

The EmailToOrderTransformer class is an implementation of Spring Integration’s
Transformer interface, by way of extending AbstractMailMessageTransformer

(shown in the following listing).

package tacos.email;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import org.apache.commons.text.similarity.LevenshteinDistance;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.mail.transformer
 .AbstractMailMessageTransformer;
import org.springframework.integration.support

.AbstractIntegrationMessageBuilder;
import org.springframework.integration.support.MessageBuilder;
import org.springframework.stereotype.Component;

@Component
public class EmailToOrderTransformer
 extends AbstractMailMessageTransformer<EmailOrder> {

Listing 10.6 Converting incoming emails to taco orders using an integration transformer

271Creating an email integration flow
 private static Logger log =
 LoggerFactory.getLogger(EmailToOrderTransformer.class);

 private static final String SUBJECT_KEYWORDS = "TACO ORDER";

 @Override
 protected AbstractIntegrationMessageBuilder<EmailOrder>
 doTransform(Message mailMessage) throws Exception {
 EmailOrder tacoOrder = processPayload(mailMessage);
 return MessageBuilder.withPayload(tacoOrder);
 }

 private EmailOrder processPayload(Message mailMessage) {
 try {
 String subject = mailMessage.getSubject();
 if (subject.toUpperCase().contains(SUBJECT_KEYWORDS)) {
 String email =
 ((InternetAddress) mailMessage.getFrom()[0]).getAddress();
 String content = mailMessage.getContent().toString();
 return parseEmailToOrder(email, content);
 }
 } catch (MessagingException e) {
 log.error("MessagingException: {}", e);
 } catch (IOException e) {
 log.error("IOException: {}", e);
 }
 return null;
 }

 private EmailOrder parseEmailToOrder(String email, String content) {
 EmailOrder order = new EmailOrder(email);
 String[] lines = content.split("\\r?\\n");
 for (String line : lines) {
 if (line.trim().length() > 0 && line.contains(":")) {
 String[] lineSplit = line.split(":");
 String tacoName = lineSplit[0].trim();
 String ingredients = lineSplit[1].trim();
 String[] ingredientsSplit = ingredients.split(",");
 List<String> ingredientCodes = new ArrayList<>();
 for (String ingredientName : ingredientsSplit) {
 String code = lookupIngredientCode(ingredientName.trim());
 if (code != null) {
 ingredientCodes.add(code);
 }
 }

 Taco taco = new Taco(tacoName);
 taco.setIngredients(ingredientCodes);
 order.addTaco(taco);
 }
 }
 return order;
 }

 private String lookupIngredientCode(String ingredientName) {
 for (Ingredient ingredient : ALL_INGREDIENTS) {

272 CHAPTER 10 Integrating Spring
 String ucIngredientName = ingredientName.toUpperCase();
 if (LevenshteinDistance.getDefaultInstance()
 .apply(ucIngredientName, ingredient.getName()) < 3 ||
 ucIngredientName.contains(ingredient.getName()) ||
 ingredient.getName().contains(ucIngredientName)) {
 return ingredient.getCode();
 }
 }
 return null;
 }

 private static Ingredient[] ALL_INGREDIENTS = new Ingredient[] {
 new Ingredient("FLTO", "FLOUR TORTILLA"),
 new Ingredient("COTO", "CORN TORTILLA"),
 new Ingredient("GRBF", "GROUND BEEF"),
 new Ingredient("CARN", "CARNITAS"),
 new Ingredient("TMTO", "TOMATOES"),
 new Ingredient("LETC", "LETTUCE"),
 new Ingredient("CHED", "CHEDDAR"),
 new Ingredient("JACK", "MONTERREY JACK"),
 new Ingredient("SLSA", "SALSA"),
 new Ingredient("SRCR", "SOUR CREAM")
 };
}

AbstractMailMessageTransformer is a convenient base class for handling messages
whose payload is an email. It takes care of extracting the email information from the
incoming message into a Message object that’s passed into the doTransform() method.

 In the doTransform() method, you pass the Message to a private method named
processPayload() to parse the email into an EmailOrder object. Although similar,
the EmailOrder object in question isn’t the same as the TacoOrder object used in the
main Taco Cloud application; it’s slightly simpler, as shown next:

package tacos.email;
import java.util.ArrayList;
import java.util.List;
import lombok.Data;

@Data
public class EmailOrder {

 private final String email;
 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }

}

Rather than carry the customer’s entire delivery and billing information, this Email-
Order class carries only the customer’s email, obtained from the incoming email.

273Creating an email integration flow
 Parsing emails into taco orders is a nontrivial task. In fact, even a naive implemen-
tation involves several dozen lines of code. And those several dozen lines of code do
nothing to further the discussion of Spring Integration and how to implement a trans-
former. Therefore, to save space, I’m leaving out the details of the processPayload()
method.

 The last thing that EmailToOrderTransformer does is return a MessageBuilder
with a payload containing the EmailOrder object. The message that’s produced by the
MessageBuilder is sent to the final component in the integration flow: a message han-
dler that posts the order to Taco Cloud’s API. The OrderSubmitMessageHandler, as
shown in the next listing, implements Spring Integration’s GenericHandler to handle
messages with an EmailOrder payload.

package tacos.email;

import org.springframework.integration.handler.GenericHandler;
import org.springframework.messaging.MessageHeaders;
import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;

@Component
public class OrderSubmitMessageHandler
 implements GenericHandler<EmailOrder> {

 private RestTemplate rest;
 private ApiProperties apiProps;

 public OrderSubmitMessageHandler(ApiProperties apiProps, RestTemplate rest) {
 this.apiProps = apiProps;
 this.rest = rest;
 }

 @Override
 public Object handle(EmailOrder order, MessageHeaders headers) {
 rest.postForObject(apiProps.getUrl(), order, String.class);
 return null;
 }
}

To satisfy the requirements of the GenericHandler interface, OrderSubmitMessage-
Handler overrides the handle() method. This method receives the incoming Email-
Order object and uses an injected RestTemplate to submit the EmailOrder via a
POST request to the URL captured in an injected ApiProperties object. Finally, the
handle() method returns null to indicate that this handler marks the end of the flow.

 ApiProperties is used to avoid hardcoding the URL in the call to postFor-
Object(). It’s a configuration properties file that looks like this:

Listing 10.7 Posting orders to the Taco Cloud API via a message handler

274 CHAPTER 10 Integrating Spring
package tacos.email;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;
import lombok.Data;

@Data
@ConfigurationProperties(prefix = "tacocloud.api")
@Component
public class ApiProperties {
 private String url;
}

And in application.yml, the URL for the Taco Cloud API might be configured like this:

tacocloud:
 api:
 url: http:/ /localhost:8080/orders/fromEmail

To make RestTemplate available in the project so that it can be injected into Order-
SubmitMessageHandler, you need to add the Spring Boot web starter to the project
build like so:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Although this makes RestTemplate available in the classpath, it also triggers autocon-
figuration for Spring MVC. As a standalone Spring Integration flow, the application
doesn’t need Spring MVC or even the embedded Tomcat that autoconfiguration pro-
vides. Therefore, you should disable Spring MVC autoconfiguration with the follow-
ing entry in application.yml:

spring:
 main:
 web-application-type: none

The spring.main.web-application-type property can be set to either servlet,
reactive, or none. When Spring MVC is in the classpath, autoconfiguration sets its
value to servlet. But here you override it to none so that Spring MVC and Tomcat
won’t be autoconfigured. (We’ll talk more about what it means for an application to
be a reactive web application in chapter 12.)

275Summary
Summary
 Spring Integration enables the definition of flows through which data can be

processed as it enters or leaves an application.
 Integration flows can be defined in XML, Java, or using a succinct Java DSL con-

figuration style.
 Message gateways and channel adapters act as entry and exit points of an inte-

gration flow.
 Messages can be transformed, split, aggregated, routed, and processed by ser-

vice activators in the course of a flow.
 Message channels connect the components of an integration flow.

Part 3

Reactive Spring

In part 3, we’ll explore the support for reactive programming in Spring.
Chapter 11 discusses the essentials of reactive programming with Project Reac-
tor, the reactive programming library that underpins Spring’s reactive features.
We’ll then look at some of Reactor’s most useful reactive operations. In chapter
12, we’ll revisit REST API development, introducing Spring WebFlux, a web
framework that borrows much from Spring MVC while offering a new reactive
model for web development. Chapter 13 takes a look at writing reactive data per-
sistence with Spring Data to read and write data to Cassandra and Mongo data-
bases. Chapter 14 rounds out part 3 by looking at RSocket, a communication
protocol that enables a reactive alternative to HTTP.

Introducing Reactor
Have you ever held a subscription for a newspaper or a magazine? The internet has
certainly taken a bite out of the subscriber base of traditional publications, but
there was a time when a newspaper subscription was one of the best ways to keep up
with the events of the day. You could count on a fresh delivery of current events
every morning, to read during breakfast or on the way to work.

 Now suppose that if, after paying for your subscription, several days go by and
no papers have been delivered. A few more days go by, and you call the newspa-
per sales office to ask why you haven’t yet received your daily paper. Imagine your
surprise if they explain, “You paid for a full year of newspapers. The year hasn’t
completed yet. You’ll certainly receive them all once the full year of newspapers
is ready.”

 Thankfully, that’s not at all how subscriptions work. Newspapers have a certain
timeliness to them. They’re delivered as quickly as possible after publication so that
they can be read while their content is still fresh. Moreover, as you’re reading the

This chapter covers
 Understanding reactive programming

 Project Reactor

 Operating on data reactively
279

280 CHAPTER 11 Introducing Reactor
latest issue, newspaper reporters are writing new stories for future editions, and the
presses are fired up producing the next edition—all in parallel.

 As we develop application code, we can write two styles of code—imperative and
reactive, which are described as follows:

 Imperative code is a lot like that absurd hypothetical newspaper subscription. It’s
a serial set of tasks, each running one at a time, each after the previous task.
Data is processed in bulk and can’t be handed over to the next task until the
previous task has completed its work on the bulk of data.

 Reactive code is a lot like a real newspaper subscription. A set of tasks is defined
to process data, but those tasks can run in parallel. Each task can process sub-
sets of the data, handing it off to the next task in line while it continues to work
on another subset of the data.

In this chapter, we’re going to step away from the Taco Cloud application temporarily
to explore Project Reactor (https://projectreactor.io/). Reactor is a library for reac-
tive programming that’s part of the Spring family of projects. And because it serves as
the foundation of Spring’s support for reactive programming, it’s important that you
understand Reactor before we look at building reactive controllers and repositories
with Spring. Before we start working with Reactor, though, let’s quickly examine the
essentials of reactive programming.

11.1 Understanding reactive programming
Reactive programming is a paradigm that’s an alternative to imperative programming.
This alternative exists because reactive programming addresses a limitation in impera-
tive programming. By understanding these limitations, you can better grasp the bene-
fits of the reactive model.

NOTE Reactive programming isn’t a silver bullet. In no way should you infer
from this chapter or any other discussion of reactive programming that
imperative programming is evil and that reactive programming is your savior.
Like anything you learn as a developer, reactive programming is a perfect fit
in some use cases, and it’s ill-fitted in others. An ounce of pragmatism is
advised.

If you’re like me and many developers, you cut your programming teeth with impera-
tive programming. There’s a good chance that most (or all) of the code you write
today is still imperative in nature. Imperative programming is intuitive enough that
young students are learning it with ease in their school’s STEM programs, and it’s
powerful enough that it makes up the bulk of code that drives the largest enterprises.

 The idea is simple: you write code as a list of instructions to be followed, one at a
time, in the order that they’re encountered. A task is performed and the program
waits for it to complete before moving on to the next task. At each step along the
way, the data that’s to be processed must be fully available so that it can be processed
as a whole.

https://projectreactor.io/

281Understanding reactive programming
 This is fine . . . until it isn’t. While a task is being performed—and especially if it’s
an I/O task, such as writing data to a database or fetching data from a remote server—
the thread that invoked that task is blocked, unable to do anything else until the task
completes. To put it bluntly, blocked threads are wasteful.

 Most programming languages, including Java, support concurrent programming.
It’s fairly easy to fire up another thread in Java and send it on its way to perform some
work while the invoking thread carries on with something else. But although it’s easy
to create threads, those threads are likely to end up blocked themselves. Managing
concurrency in multiple threads is challenging. More threads mean more complexity.

 In contrast, reactive programming is functional and declarative in nature. Rather
than describe a set of steps that are to be performed sequentially, reactive program-
ming involves describing a pipeline or stream through which data flows. Rather than
requiring the data to be available and processed as a whole, a reactive stream pro-
cesses data as it becomes available. In fact, the incoming data may be endless (a con-
stant stream of a location’s real-time temperature data, for instance).

NOTE If you’re new to functional programming in Java, you may want to have
a look at Functional Programming in Java by Pierre-Yves Saumont (Manning,
2017), or Grokking Functional Programming by Michał Płachta (Manning, 2021).

To apply a real-world analogy, consider imperative programming as a water balloon
and reactive programming as a garden hose. Both are suitable ways to surprise and
soak an unsuspecting friend on a hot summer day. But they differ in their execution
style as follows:

 A water balloon carries its payload all at once, soaking its intended target at the
moment of impact. The water balloon has a finite capacity, however, and if you
wish to soak more people (or the same person to a greater extent), your only
choice is to scale up by increasing the number of water balloons.

 A garden hose carries its payload as a stream of water that flows from the spigot
to the nozzle. The garden hose’s capacity may be finite at any given point in
time, but it’s unlimited over the course of a water battle. As long as water is
entering the hose from the spigot, it will continue to flow through the hose and
spray out of the nozzle. The same garden hose is easily scalable to soak as many
friends as you wish.

There’s nothing inherently wrong with water balloons (or imperative programming),
but the person holding the garden hose (or applying reactive programming) has an
advantage in regard to scalability and performance.

11.1.1 Defining Reactive Streams

Reactive Streams is an initiative started in late 2013 by engineers from Netflix, Light-
bend, and Pivotal (the company behind Spring). Reactive Streams aims to provide a
standard for asynchronous stream processing with nonblocking backpressure.

282 CHAPTER 11 Introducing Reactor
 We’ve already touched on the asynchronous trait of reactive programming; it’s
what enables us to perform tasks in parallel to achieve greater scalability. Backpressure
is a means by which consumers of data can avoid being overwhelmed by an overly fast
data source, by establishing limits on how much they’re willing to handle.

The Reactive Streams specification can be summed up by four interface definitions:
Publisher, Subscriber, Subscription, and Processor. A Publisher produces data
that it sends to a Subscriber per a Subscription. The Publisher interface declares a
single method, subscribe(), through which a Subscriber can subscribe to the Pub-
lisher, as shown here:

public interface Publisher<T> {
 void subscribe(Subscriber<? super T> subscriber);
}

Once a Subscriber has subscribed, it can receive events from the Publisher. Those
events are sent via methods on the Subscriber interface as follows:

public interface Subscriber<T> {
 void onSubscribe(Subscription sub);
 void onNext(T item);
 void onError(Throwable ex);
 void onComplete();
}

The first event that the Subscriber will receive is through a call to onSubscribe().
When the Publisher calls onSubscribe(), it passes a Subscription object to the
Subscriber. It’s through the Subscription that the Subscriber can manage its sub-
scription, as shown next:

Java streams vs. Reactive Streams
There’s a lot of similarity between Java streams and Reactive Streams. To start with,
they both have the word streams in their names. They also both provide a functional
API for working with data. In fact, as you’ll see later when we look at Reactor, they
even share many of the same operations.

Java streams, however, are typically synchronous and work with a finite set of data.
They’re essentially a means of iterating over a collection with functions.

Reactive Streams support asynchronous processing of datasets of any size, including
infinite datasets. They process data in real time, as it becomes available, with back-
pressure to avoid overwhelming their consumers.

On the other hand, JDK 9’s Flow APIs correspond to Reactive Streams. The Flow
.Publisher, Flow.Subscriber, Flow.Subscription, and Flow.Processor types
in JDK 9 map directly to Publisher, Subscriber, Subscription, and Processor in
Reactive Streams. That said, JDK 9’s Flow APIs are not an actual implementation of
Reactive Streams.

283Getting started with Reactor
public interface Subscription {
 void request(long n);
 void cancel();
}

The Subscriber can call request() to request that data be sent, or it can call cancel()
to indicate that it’s no longer interested in receiving data and is canceling the sub-
scription. When calling request(), the Subscriber passes in a long value to indicate
how many data items it’s willing to accept. This is where backpressure comes in, prevent-
ing the Publisher from sending more data than the Subscriber is able to handle. After
the Publisher has sent as many items as were requested, the Subscriber can call
request() again to request more.

 Once the Subscriber has requested data, the data starts flowing through the
stream. For every item that’s published by the Publisher, the onNext() method will
be called to deliver the data to the Subscriber. If there are any errors, onError() is
called. If the Publisher has no more data to send and isn’t going to produce any
more data, it will call onComplete() to tell the Subscriber that it’s out of business.

 As for the Processor interface, it’s a combination of Subscriber and Publisher,
as shown here:

public interface Processor<T, R>
 extends Subscriber<T>, Publisher<R> {}

As a Subscriber, a Processor will receive data and process it in some way. Then it will
switch hats and act as a Publisher to publish the results to its Subscribers.

 As you can see, the Reactive Streams specification is rather straightforward. It’s
fairly easy to see how you could build up a data processing pipeline that starts with a
Publisher, pumps data through zero or more Processors, and then drops the final
results off to a Subscriber.

 What the Reactive Streams interfaces don’t lend themselves to, however, is com-
posing such a stream in a functional way. Project Reactor is an implementation of the
Reactive Streams specification that provides a functional API for composing Reactive
Streams. As you’ll see in the following chapters, Reactor is the foundation for Spring’s
reactive programming model. In the remainder of this chapter, we’re going to
explore (and, dare I say, have a lot of fun with) Project Reactor.

11.2 Getting started with Reactor
Reactive programming requires us to think in a very different way from imperative
programming. Rather than describe a set of steps to be taken, reactive programming
means building a pipeline through which data will flow. As data passes through the
pipeline, it can be altered or used in some way.

 For example, suppose you want to take a person’s name, change all of the letters to
uppercase, use it to create a greeting message, and then finally print it. In an impera-
tive programming model, the code would look something like this:

284 CHAPTER 11 Introducing Reactor
String name = "Craig";
String capitalName = name.toUpperCase();
String greeting = "Hello, " + capitalName + "!";
System.out.println(greeting);

In the imperative model, each line of code performs a step, one right after the other,
and definitely in the same thread. Each step blocks the executing thread from moving
to the next step until complete.

 In contrast, functional, reactive code could achieve the same thing like this:

Mono.just("Craig")
 .map(n -> n.toUpperCase())
 .map(cn -> "Hello, " + cn + "!")
 .subscribe(System.out::println);

Don’t worry too much about the details of this example; we’ll talk all about the
just(), map(), and subscribe() operations soon enough. For now, it’s important to
understand that although the reactive example still seems to follow a step-by-step
model, it’s really a pipeline that data flows through. At each phase of the pipeline,
the data is tweaked somehow, but no assumption can be made about which thread
any of the operations are performed on. They may be the same thread . . . or they
may not be.

 The Mono in the example is one of Reactor’s two core types. Flux is the other.
Both are implementations of Reactive Streams’ Publisher. A Flux represents a pipe-
line of zero, one, or many (potentially infinite) data items. A Mono is a specialized
reactive type that’s optimized for when the dataset is known to have no more than
one data item.

The previous example actually contains three Mono objects. The just() operation
creates the first one. When the Mono emits a value, that value is given to the map()
operation to be capitalized and used to create another Mono. When the second Mono
publishes its data, it’s given to the second map() operation to do some String con-
catenation, the results of which are used to create the third Mono. Finally, the call to
subscribe() subscribes to the Mono, receives the data, and prints it.

Reactor vs. RxJava (ReactiveX)
If you’re already familiar with RxJava or ReactiveX, you may be thinking that Mono and
Flux sound a lot like Observable and Single. In fact, they’re approximately equiv-
alent semantically. They even offer many of the same operations.

Although we focus on Reactor in this book, you may be happy to know that it’s pos-
sible to covert between Reactor and RxJava types. Moreover, as you’ll see in the fol-
lowing chapters, Spring can also work with RxJava types.

285Getting started with Reactor
11.2.1 Diagramming reactive flows

Reactive flows are often illustrated with marble diagrams. Marble diagrams, in their
simplest form, depict a timeline of data as it flows through a Flux or Mono at the top,
an operation in the middle, and the timeline of the resulting Flux or Mono at the bot-
tom. Figure 11.1 shows a marble diagram template for a Flux. As you can see, as data
flows through the original Flux, it’s processed through some operation, resulting in a
new Flux through which the processed data flows.

Figure 11.2 shows a similar marble diagram, but for a Mono. As you can see, the key dif-
ference is that a Mono will have either zero or one data item, or an error.

Values emitted

b uxy the Fl

The Flux’s

timeline

Some operation to

perform on the Flux

Values on the ne Fluxw

after the operation has

been performed

Indicates an error

or abnormal termination

of the Flux

Indicates completion

Operation

of the Flux

A wne Flux resulting

from operating on the

value em heitted by t

original Flux

1 2 3 4 5 6

1' 2' 3'

Figure 11.1 Marble diagram illustrating the basic flow of a Flux

A value emitted

by the Mono

The ono’M s

timeline

Some operation to

perform on the Mono

A v walue on the ne Mono

after the operation has

been perf medor

Indicates an error

or abnormal termination

of the Mono

Indicates completion

Operation

of the Mono

A Mono resultingnew

from operating on the

value emitted by the

or Monoiginal

1

1'

Figure 11.2 Marble diagram illustrating the basic flow of a Mono

286 CHAPTER 11 Introducing Reactor
In section 11.3, we’ll explore many operations supported by Flux and Mono, and we’ll
use marble diagrams to visualize how they work.

11.2.2 Adding Reactor dependencies

To get started with Reactor, add the following dependency to the project build:

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
</dependency>

Reactor also provides some great testing support. You’re going to write a lot of tests
around your Reactor code, so you’ll definitely want to add the next dependency to
your build:

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-test</artifactId>
 <scope>test</scope>
</dependency>

I’m assuming that you’re adding these dependencies to a Spring Boot project,
which handles dependency management for you, so there’s no need to specify the
<version> element for the dependencies. But if you want to use Reactor in a non–
Spring Boot project, you’ll need to set up Reactor’s BOM (bill of materials) in the
build. The following dependency management entry adds Reactor’s 2020.0.4 release
to the build:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-bom</artifactId>
 <version>2020.0.4</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

The examples we’ll work with in this chapter are standalone and unrelated to the
Taco Cloud projects we’ve been working with. Therefore, it may be best to create
a fresh new Spring project with the Reactor dependencies in the build and work
from there.

 Now that Reactor is in your project build, you can start creating reactive pipelines
with Mono and Flux. For the remainder of this chapter, we’ll walk through several
operations offered by Mono and Flux.

287Applying common reactive operations
11.3 Applying common reactive operations
Flux and Mono are the most essential building blocks provided by Reactor, and the
operations those two reactive types offer are the mortar that binds them together to
create pipelines through which data can flow. Flux and Mono offer more than 500
operations, which can be loosely categorized as follows:

 Creation
 Combination
 Transformation
 Logic

As much fun as it would be to poke at each of the 500 operations to see how they tick,
there’s simply not enough room in this chapter. I’ve selected a few of the most useful
operations to experiment with in this section. We’ll start with creation operations.

NOTE Where are the Mono examples? Mono and Flux share many of the same
operations, so it’s mostly unnecessary to show the same operation twice, once
for Mono and again for Flux. Moreover, although the Mono operations are use-
ful, they’re slightly less interesting to look at than the same operations when
given a Flux. Most of the examples we’ll work with will involve Flux. Just know
that Mono often has equivalent operations.

11.3.1 Creating reactive types

Often when working with reactive types in Spring, you’ll be given a Flux or a Mono
from a repository or a service, so you won’t need to create one yourself. But occasion-
ally you’ll need to create a new reactive publisher.

 Reactor provides several operations for creating a Flux or Mono. In this section,
we’ll look at a few of the most useful creation operations.

CREATING FROM OBJECTS

If you have one or more objects from which you’d like to create a Flux or Mono, you
can use the static just() method on Flux or Mono to create a reactive type whose data
is driven by those objects. For example, the following test method creates a Flux from
five String objects:

@Test
public void createAFlux_just() {
 Flux<String> fruitFlux = Flux
 .just("Apple", "Orange", "Grape", "Banana", "Strawberry");
}

At this point, the Flux has been created, but it has no subscribers. Without any sub-
scribers, data won’t flow. Thinking of the garden hose analogy, you’ve attached the
garden hose to the spigot, and there’s water from the utility company on the other
side—but until you turn on the spigot, water won’t flow. Subscribing to a reactive type
is how you turn on the flow of data.

288 CHAPTER 11 Introducing Reactor
 To add a subscriber, you can call the subscribe() method on the Flux as follows:

fruitFlux.subscribe(
 f -> System.out.println("Here's some fruit: " + f)
);

The lambda given to subscribe() here is actually a java.util.Consumer that’s used
to create a Reactive Streams Subscriber. Upon calling subscribe(), the data starts
flowing. In this example, there are no intermediate operations, so the data flows
directly from the Flux to the Subscriber.

 Printing the entries from a Flux or Mono to the console is a good way to see the
reactive type in action. But a better way to actually test a Flux or a Mono is to use Reac-
tor’s StepVerifier. Given a Flux or Mono, StepVerifier subscribes to the reactive
type and then applies assertions against the data as it flows through the stream, finally
verifying that the stream completes as expected.

 For example, to verify that the prescribed data flows through the fruitFlux, you
can write a test that looks like this:

StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();

In this case, StepVerifier subscribes to the Flux and then asserts that each item
matches the expected fruit name. Finally, it verifies that after Strawberry is produced
by the Flux, the Flux is complete.

 For the remainder of the examples in this chapter, you’ll use StepVerifier to
write learning tests—tests that verify behavior and help you understand how some-
thing works—to get to know some of Reactor’s most useful operations.

CREATING FROM COLLECTIONS

A Flux can also be created from an array, Iterable, or Java Stream. Figure 11.3 illus-
trates how this works with a marble diagram.

1 2 3 4 5 6

1 2 3 4 5 6

, ,, , ,

fromArray, fromIterable, fromStream

Figure 11.3 A Flux can be created
from an array, Iterable, or Stream.

289Applying common reactive operations
To create a Flux from an array, call the static fromArray() method, passing in the
source array like so:

@Test
public void createAFlux_fromArray() {
 String[] fruits = new String[] {
 "Apple", "Orange", "Grape", "Banana", "Strawberry" };

 Flux<String> fruitFlux = Flux.fromArray(fruits);

 StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();
}

Because the source array contains the same fruit names you used when creating a
Flux from a list of objects, the data emitted by the Flux will have the same values.
Thus, you can use the same StepVerifier as before to verify this Flux.

 If you need to create a Flux from a java.util.List, java.util.Set, or any other
implementation of java.lang.Iterable, you can pass it into the static fromIterable()
method, as shown here:

@Test
public void createAFlux_fromIterable() {
 List<String> fruitList = new ArrayList<>();
 fruitList.add("Apple");
 fruitList.add("Orange");
 fruitList.add("Grape");
 fruitList.add("Banana");
 fruitList.add("Strawberry");

 Flux<String> fruitFlux = Flux.fromIterable(fruitList);

 StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();
}

Or, if you happen to have a Java Stream that you’d like to use as the source for a Flux,
fromStream() is the method you’ll use, as shown next:

@Test
 public void createAFlux_fromStream() {
 Stream<String> fruitStream =
 Stream.of("Apple", "Orange", "Grape", "Banana", "Strawberry");

290 CHAPTER 11 Introducing Reactor
 Flux<String> fruitFlux = Flux.fromStream(fruitStream);

 StepVerifier.create(fruitFlux)
 .expectNext("Apple")
 .expectNext("Orange")
 .expectNext("Grape")
 .expectNext("Banana")
 .expectNext("Strawberry")
 .verifyComplete();
 }

Again, you can use the same StepVerifier as before to verify the data published by
the Flux.

GENERATING FLUX DATA

Sometimes you don’t have any data to work with and just need Flux to act as a
counter, emitting a number that increments with each new value. To create a counter
Flux, you can use the static range() method. The diagram in figure 11.4 illustrates
how range() works.

The following test method demonstrates how to create a range Flux:

@Test
public void createAFlux_range() {
 Flux<Integer> intervalFlux =
 Flux.range(1, 5);

 StepVerifier.create(intervalFlux)
 .expectNext(1)
 .expectNext(2)
 .expectNext(3)
 .expectNext(4)
 .expectNext(5)
 .verifyComplete();
}

In this example, the range Flux is created with a starting value of 1 and an ending
value of 5. The StepVerifier proves that it will publish five items, which are the inte-
gers 1 through 5.

 Another Flux-creation method that’s similar to range() is interval(). Like the
range() method, interval() creates a Flux that emits an incrementing value. But
what makes interval() special is that instead of you giving it a starting and ending

n n+1 n+1 n+1 n+m–1

range(n, m)

…

Figure 11.4 Creating a Flux from
a range results in a counter-style
publishing of messages.

291Applying common reactive operations
value, you specify a duration or how often a value should be emitted. Figure 11.5
shows a marble diagram for the interval() creation method.

For example, to create an interval Flux that emits a value every second, you can use
the static interval() method as follows:

@Test
public void createAFlux_interval() {
 Flux<Long> intervalFlux =
 Flux.interval(Duration.ofSeconds(1))
 .take(5);

 StepVerifier.create(intervalFlux)
 .expectNext(0L)
 .expectNext(1L)
 .expectNext(2L)
 .expectNext(3L)
 .expectNext(4L)
 .verifyComplete();
}

Notice that the value emitted by an interval Flux starts with 0 and increments on each
successive item. Also, because interval() isn’t given a maximum value, it will poten-
tially run forever. Therefore, you also use the take() operation to limit the results to
the first five entries. We’ll talk more about the take() operation in the next section.

11.3.2 Combining reactive types

You may find yourself with two reactive types that you need to somehow merge
together. Or, in other cases, you may need to split a Flux into more than one reactive
type. In this section, we’ll examine operations that combine and split Reactor’s Flux
and Mono.

MERGING REACTIVE TYPES

Suppose you have two Flux streams and need to create a single resulting Flux that will
produce data as it becomes available from either of the upstream Flux streams. To
merge one Flux with another, you can use the mergeWith() operation, as illustrated
with the marble diagram in figure 11.6.

 For example, suppose you have a Flux whose values are the names of TV and
movie characters, and you have a second Flux whose values are the names of foods

0 1 2 3 4 5

inter al(v)

Figure 11.5 A Flux created from an interval
has a periodic entry published to it.

292 CHAPTER 11 Introducing Reactor
that those characters enjoy eating. The following test method shows how you could
merge the two Flux objects with the mergeWith() method:

@Test
public void mergeFluxes() {

 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa")
 .delayElements(Duration.ofMillis(500));
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples")
 .delaySubscription(Duration.ofMillis(250))
 .delayElements(Duration.ofMillis(500));

 Flux<String> mergedFlux = characterFlux.mergeWith(foodFlux);

 StepVerifier.create(mergedFlux)
 .expectNext("Garfield")
 .expectNext("Lasagna")
 .expectNext("Kojak")
 .expectNext("Lollipops")
 .expectNext("Barbossa")
 .expectNext("Apples")
 .verifyComplete();
}

Normally, a Flux will publish data as quickly as it possibly can. Therefore, you use a
delayElements() operation on both of the created Flux streams to slow them down
a little—emitting an entry only every 500 ms. Furthermore, so that the food Flux
starts streaming after the character Flux, you apply a delaySubscription() operation
to the food Flux so that it won’t emit any data until 250 ms have passed following a
subscription.

 After merging the two Flux objects, a new merged Flux is created. When Step-
Verifier subscribes to the merged Flux, it will, in turn, subscribe to the two source
Flux streams, starting the flow of data.

 The order of items emitted from the merged Flux aligns with the timing of how
they’re emitted from the sources. Because both Flux objects are set to emit at regular

1 2 3 4 5

2 4

1 3 5

merge

Figure 11.6 Merging two Flux streams
interleaves their messages into a new Flux.

293Applying common reactive operations
rates, the values will be interleaved through the merged Flux, resulting in a character,
followed by a food, followed by a character, and so forth. If the timing of either Flux
were to change, it’s possible that you might see two character items or two food items
published one after the other.

 Because mergeWith() can’t guarantee a perfect back and forth between its sources,
you may want to consider the zip() operation instead. When two Flux objects are
zipped together, it results in a new Flux that produces a tuple of items, where the
tuple contains one item from each source Flux. Figure 11.7 illustrates how two Flux
objects can be zipped together.

To see the zip() operation in action, consider the following test method, which zips
the character Flux and the food Flux together:

@Test
public void zipFluxes() {
 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa");
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples");

 Flux<Tuple2<String, String>> zippedFlux =
 Flux.zip(characterFlux, foodFlux);

 StepVerifier.create(zippedFlux)
 .expectNextMatches(p ->
 p.getT1().equals("Garfield") &&
 p.getT2().equals("Lasagna"))
 .expectNextMatches(p ->
 p.getT1().equals("Kojak") &&
 p.getT2().equals("Lollipops"))
 .expectNextMatches(p ->
 p.getT1().equals("Barbossa") &&
 p.getT2().equals("Apples"))
 .verifyComplete();
}

Notice that unlike mergeWith(), the zip() operation is a static creation operation.
The created Flux has a perfect alignment between characters and their favorite foods.

1 3

zip

2

1 2

4

3 4

Figure 11.7 Zipping two Flux streams
results in a Flux containing tuples of
one element from each Flux.

294 CHAPTER 11 Introducing Reactor
Each item emitted from the zipped Flux is a Tuple2 (a container object that carries
two other objects) containing items from each source Flux, in the order that they’re
published.

 If you’d rather not work with a Tuple2 and would rather work with some other
type, you can provide a Function to zip() that produces any object you’d like, given
the two items (as shown in the marble diagram in figure 11.8).

For example, the following test method shows how to zip the character Flux with the
food Flux so that it results in a Flux of String objects:

@Test
public void zipFluxesToObject() {
 Flux<String> characterFlux = Flux
 .just("Garfield", "Kojak", "Barbossa");
 Flux<String> foodFlux = Flux
 .just("Lasagna", "Lollipops", "Apples");

 Flux<String> zippedFlux =
 Flux.zip(characterFlux, foodFlux, (c, f) -> c + " eats " + f);

 StepVerifier.create(zippedFlux)
 .expectNext("Garfield eats Lasagna")
 .expectNext("Kojak eats Lollipops")
 .expectNext("Barbossa eats Apples")
 .verifyComplete();
}

The Function given to zip() (given here as a lambda) simply concatenates the two
items into a sentence to be emitted by the zipped Flux.

SELECTING THE FIRST REACTIVE TYPE TO PUBLISH

Suppose you have two Flux objects, and rather than merge them together, you merely
want to create a new Flux that emits the values from the first Flux that produces a
value. As shown in figure 11.9, the firstWithSignal() operation picks the first of two
Flux objects and echoes the values it publishes.

 The following test method creates a fast Flux and a slow Flux (where “slow” means that
it will not publish an item until 100 ms after subscription). Using firstWithSignal(),

zip(()),

Figure 11.8 An alternative form of the
zip() operation results in a Flux of
messages created from one element of
each incoming Flux.

295Applying common reactive operations
it creates a new Flux that will publish values only from the first source Flux to publish
a value.

@Test
public void firstWithSignalFlux() {

 Flux<String> slowFlux = Flux.just("tortoise", "snail", "sloth")
 .delaySubscription(Duration.ofMillis(100));
 Flux<String> fastFlux = Flux.just("hare", "cheetah", "squirrel");

 Flux<String> firstFlux = Flux.firstWithSignal(slowFlux, fastFlux);

 StepVerifier.create(firstFlux)
 .expectNext("hare")
 .expectNext("cheetah")
 .expectNext("squirrel")
 .verifyComplete();
}

In this case, because the slow Flux won’t publish any values until 100 ms after the fast
Flux has started publishing, the newly created Flux will simply ignore the slow Flux
and publish values only from the fast Flux.

11.3.3 Transforming and filtering reactive streams

As data flows through a stream, you’ll likely need to filter out some values and modify
other values. In this section, we’ll look at operations that transform and filter the data
flowing through a reactive stream.

FILTERING DATA FROM REACTIVE TYPES

One of the most basic ways of filtering data as it flows from a Flux is to simply disregard the
first so many entries. The skip() operation, illustrated in figure 11.10, does exactly that.

1 3 5

1 3 5

first

2 4

Figure 11.9 The first() operation chooses
the first Flux to emit a message and thereafter
produces messages only from that Flux.

1 2 3 4 5

4 5

skip(3)

Figure 11.10 The skip() operation skips a
specified number of messages before passing the
remaining messages on to the resulting Flux.

296 CHAPTER 11 Introducing Reactor
Given a Flux with several entries, the skip() operation will create a new Flux that
skips over a specified number of items before emitting the remaining items from the
source Flux. The following test method shows how to use skip():

@Test
public void skipAFew() {
 Flux<String> countFlux = Flux.just(
 "one", "two", "skip a few", "ninety nine", "one hundred")
 .skip(3);

 StepVerifier.create(countFlux)
 .expectNext("ninety nine", "one hundred")
 .verifyComplete();
}

In this case, you have a Flux of five String items. Calling skip(3) on that Flux
produces a new Flux that skips over the first three items and publishes only the last
two items.

 But maybe you don’t want to skip a specific number of items but instead need to
skip the first so many items until some duration has passed. An alternate form of the
skip() operation, illustrated in figure 11.11, produces a Flux that waits until some
specified time has passed before emitting items from the source Flux.

The test method that follows uses skip() to create a Flux that waits 4 seconds before
emitting any values. Because that Flux was created from a Flux that has a 1-second
delay between items (using delayElements()), only the last two items will be emitted.

@Test
public void skipAFewSeconds() {
 Flux<String> countFlux = Flux.just(
 "one", "two", "skip a few", "ninety nine", "one hundred")
 .delayElements(Duration.ofSeconds(1))
 .skip(Duration.ofSeconds(4));

 StepVerifier.create(countFlux)
 .expectNext("ninety nine", "one hundred")
 .verifyComplete();
}

1 2 3 4 5

4 5

skip()

Figure 11.11 An alternative form of the
skip() operation waits until some duration
has passed before passing messages on to
the resulting Flux.

297Applying common reactive operations
You’ve already seen an example of the take() operation, but in light of the skip()
operation, take() can be thought of as the opposite of skip(). Whereas skip() skips
the first few items, take() emits only the first so many items (as illustrated by the mar-
ble diagram in figure 11.12):

@Test
public void take() {
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon", "Zion", "Acadia")
 .take(3);

 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Grand Canyon")
 .verifyComplete();
}

Like skip(), take() also has an alternative form that’s based on a duration rather
than an item count. It will take and emit as many items as pass through the source
Flux until some period of time has passed, after which the Flux completes. This is
illustrated in figure 11.13.

The following test method uses the alternative form of take() to emit as many items
as it can in the first 3.5 seconds after subscription:

@Test
public void takeForAwhile() {

1 2 3

1 2 3

take(3)

c
a
n
c
e
l
(
)

Figure 11.12 The take() operation
passes only the first so many messages
from the incoming Flux and then
cancels the subscription.

1 2 3

1 2 3

c
a
n
c
e
l
(
)

take()

Figure 11.13 An alternative form of the
take() operation passes messages on
to the resulting Flux until some duration
has passed.

298 CHAPTER 11 Introducing Reactor
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon", "Zion", "Grand Teton")
 .delayElements(Duration.ofSeconds(1))
 .take(Duration.ofMillis(3500));

 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Grand Canyon")
 .verifyComplete();
}

The skip() and take() operations can be thought of as filter operations where the
filter criteria are based on a count or a duration. For more general-purpose filtering
of Flux values, you’ll find the filter() operation quite useful.

 Given a Predicate that decides whether an item will pass through the Flux, the
filter() operation lets you selectively publish based on whatever criteria you want.
The marble diagram in figure 11.14 shows how filter() works.

To see filter() in action, consider the following test method:

@Test+
public void filter() {
 Flux<String> nationalParkFlux = Flux.just(
 "Yellowstone", "Yosemite", "Grand Canyon", "Zion", "Grand Teton")
 .filter(np -> !np.contains(" "));

 StepVerifier.create(nationalParkFlux)
 .expectNext("Yellowstone", "Yosemite", "Zion")
 .verifyComplete();
}

Here, filter() is given a Predicate as a lambda that accepts only String values that
don’t have any spaces. Consequently, "Grand Canyon" and "Grand Teton" are filtered
out of the resulting Flux.

 Perhaps the filtering you need is to filter out any items that you’ve already
received. The distinct() operation, as illustrated in figure 11.15, results in a Flux
that publishes only items from the source Flux that haven’t already been published.

1 5

1 5

2 3 4

filter()
Figure 11.14 An incoming Flux can
be filtered so that the resulting Flux
receives only messages that match a
given predicate.

299Applying common reactive operations
In the following test, only unique String values will be emitted from the distinct Flux:

@Test
public void distinct() {
 Flux<String> animalFlux = Flux.just(
 "dog", "cat", "bird", "dog", "bird", "anteater")
 .distinct();

 StepVerifier.create(animalFlux)
 .expectNext("dog", "cat", "bird", "anteater")
 .verifyComplete();
}

Although "dog" and "bird" are each published twice from the source Flux, the dis-
tinct Flux publishes them only once.

MAPPING REACTIVE DATA

One of the most common operations you’ll use on either a Flux or a Mono is to trans-
form published items to some other form or type. Reactor’s types offer map() and
flatMap() operations for that purpose.

 The map() operation creates a Flux that simply performs a transformation as
prescribed by a given Function on each object it receives before republishing it. Fig-
ure 11.16 illustrates how the map() operation works.

In the following test method, a Flux of String values representing basketball players
is mapped to a new Flux of Player objects:

@Test
public void map() {

distinct

Figure 11.15 The distinct() operation
filters out any duplicate messages.

1 2 3 4

1 2 3 4

map()
Figure 11.16 The map() operation
performs a transformation of incoming
messages into new messages on the
resulting stream.

300 CHAPTER 11 Introducing Reactor
 Flux<Player> playerFlux = Flux
 .just("Michael Jordan", "Scottie Pippen", "Steve Kerr")
 .map(n -> {
 String[] split = n.split("\\s");
 return new Player(split[0], split[1]);
 });

 StepVerifier.create(playerFlux)
 .expectNext(new Player("Michael", "Jordan"))
 .expectNext(new Player("Scottie", "Pippen"))
 .expectNext(new Player("Steve", "Kerr"))
 .verifyComplete();
}

@Data
private static class Player {
 private final String firstName;
 private final String lastName;
}

The Function given to map() (as a lambda) splits the incoming String at a space
and uses the resulting String array to create a Player object. Although the Flux
created with just() carried String objects, the Flux resulting from map() carries
Player objects.

 What’s important to understand about map() is that the mapping is performed syn-
chronously, as each item is published by the source Flux. If you want to perform the
mapping asynchronously, you should consider the flatMap() operation.

 The flatMap() operation requires some thought and practice to acquire full profi-
ciency. As shown in figure 11.17, instead of simply mapping one object to another, as
in the case of map(), flatMap() maps each object to a new Mono or Flux. The results
of the Mono or Flux are flattened into a new resulting Flux. When used along with
subscribeOn(), flatMap() can unleash the asynchronous power of Reactor’s types.

The following test method demonstrates the use of flatMap() and subscribeOn():

@Test
public void flatMap() {
 Flux<Player> playerFlux = Flux
 .just("Michael Jordan", "Scottie Pippen", "Steve Kerr")

1 2 3

flatMap()

1 1 2 3 2 3

Figure 11.17 The flatMap() operation
uses an intermediate Flux to perform a
transformation, consequently allowing for
asynchronous transformations.

301Applying common reactive operations
 .flatMap(n -> Mono.just(n)
 .map(p -> {
 String[] split = p.split("\\s");
 return new Player(split[0], split[1]);
 })
 .subscribeOn(Schedulers.parallel())
);

 List<Player> playerList = Arrays.asList(
 new Player("Michael", "Jordan"),
 new Player("Scottie", "Pippen"),
 new Player("Steve", "Kerr"));

 StepVerifier.create(playerFlux)
 .expectNextMatches(p -> playerList.contains(p))
 .expectNextMatches(p -> playerList.contains(p))
 .expectNextMatches(p -> playerList.contains(p))
 .verifyComplete();
}

Notice that flatMap() is given a lambda Function that transforms the incoming
String into a Mono of type String. A map() operation is then applied to the Mono to
transform the String into a Player. After the String is mapped to a Player on each
internal Flux, they are published into a single Flux returned by flatMap(), thus com-
pleting the flattening of the results.

 If you stopped right there, the resulting Flux would carry Player objects, pro-
duced synchronously in the same order as with the map() example. But the last thing
you do with the Mono is call subscribeOn() to indicate that each subscription should
take place in a parallel thread. Consequently, the mapping operations for multiple
incoming String objects can be performed asynchronously and in parallel.

 Although subscribeOn() is named similarly to subscribe(), they’re quite differ-
ent. Whereas subscribe() is a verb, subscribing to a reactive flow and effectively kick-
ing it off, subscribeOn() is more descriptive, specifying how a subscription should
be handled concurrently. Reactor doesn’t force any particular concurrency model;
it’s through subscribeOn() that you can specify the concurrency model, using one
of the static methods from Schedulers, that you want to use. In this example, you
used parallel(), which uses worker threads from a fixed pool (sized to the number
of CPU cores). But Schedulers supports several concurrency models, such as those
described in table 11.1.

Table 11.1 Concurrency models for Schedulers

Schedulers method Description

.immediate() Executes the subscription in the current thread.

.single() Executes the subscription in a single, reusable thread. Reuses the same
thread for all callers.

.newSingle() Executes the subscription in a per-call dedicated thread.

302 CHAPTER 11 Introducing Reactor
The upside to using flatMap() and subscribeOn() is that you can increase the through-
put of the stream by splitting the work across multiple parallel threads. But because
the work is being done in parallel, with no guarantees on which will finish first, there’s
no way to know the order of items emitted in the resulting Flux. Therefore, Step-
Verifier is able to verify only that each item emitted exists in the expected list of
Player objects and that there will be three such items before the Flux completes.

BUFFERING DATA ON A REACTIVE STREAM

In the course of processing the data flowing through a Flux, you might find it helpful
to break the stream of data into bite-size chunks. The buffer() operation, shown in
figure 11.18, can help with that.

Given a Flux of String values, each containing the name of a fruit, you can create a
new Flux of List collections, where each List has no more than a specified number
of elements as follows:

@Test
public void buffer() {
 Flux<String> fruitFlux = Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry");

 Flux<List<String>> bufferedFlux = fruitFlux.buffer(3);

 StepVerifier
 .create(bufferedFlux)
 .expectNext(Arrays.asList("apple", "orange", "banana"))
 .expectNext(Arrays.asList("kiwi", "strawberry"))
 .verifyComplete();
}

.elastic() Executes the subscription in a worker pulled from an unbounded, elastic
pool. New worker threads are created as needed, and idle workers are dis-
posed of (by default, after 60 seconds).

.parallel() Executes the subscription in a worker pulled from a fixed-size pool, sized to
the number of CPU cores.

Table 11.1 Concurrency models for Schedulers (continued)

Schedulers method Description

1 2 3 4 5

1 2 3 4 5

buffer(maxSize=3)

Figure 11.18 The buffer() operation results
in a Flux of lists of a given maximum size that
are collected from the incoming Flux.

303Applying common reactive operations
In this case, the Flux of String elements is buffered into a new Flux of List collec-
tions containing no more than three items each. Consequently, the original Flux that
emits five String values will be converted to a Flux that emits two List collections,
one containing three fruits and the other with two fruits.

 So what? Buffering values from a reactive Flux into nonreactive List collections
seems counterproductive. But when you combine buffer() with flatMap(), it
enables each of the List collections to be processed in parallel, as shown next:

@Test
public void bufferAndFlatMap() throws Exception {
 Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry")
 .buffer(3)
 .flatMap(x ->
 Flux.fromIterable(x)
 .map(y -> y.toUpperCase())
 .subscribeOn(Schedulers.parallel())
 .log()
).subscribe();
}

In this new example, you still buffer a Flux of five String values into a new Flux of
List collections. But then you apply flatMap() to that Flux of List collections. This
takes each List buffer and creates a new Flux from its elements, and then applies a
map() operation on it. Consequently, each buffered List is further processed in paral-
lel in individual threads.

 To prove that it works, I’ve also included a log() operation to be applied to each
sub-Flux. The log() operation simply logs all Reactive Streams events, so that you can
see what’s really happening. As a result, the following entries are written to the log
(with the time component removed for brevity’s sake):

[main] INFO reactor.Flux.SubscribeOn.1 -
 onSubscribe(FluxSubscribeOn.SubscribeOnSubscriber)
[main] INFO reactor.Flux.SubscribeOn.1 - request(32)
[main] INFO reactor.Flux.SubscribeOn.2 -
 onSubscribe(FluxSubscribeOn.SubscribeOnSubscriber)
[main] INFO reactor.Flux.SubscribeOn.2 - request(32)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(APPLE)
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onNext(KIWI)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(ORANGE)
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onNext(STRAWBERRY)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onNext(BANANA)
[parallel-1] INFO reactor.Flux.SubscribeOn.1 - onComplete()
[parallel-2] INFO reactor.Flux.SubscribeOn.2 - onComplete()

As the log entries clearly show, the fruits in the first buffer (apple, orange, and
banana) are handled in the parallel-1 thread. Meanwhile, the fruits in the second
buffer (kiwi and strawberry) are processed in the parallel-2 thread. As is apparent

304 CHAPTER 11 Introducing Reactor
by the fact that the log entries from each buffer are woven together, the two buffers
are processed in parallel.

 If, for some reason, you need to collect everything that a Flux emits into a List,
you can call buffer() with no arguments as follows:

Flux<List<String>> bufferedFlux = fruitFlux.buffer();

This results in a new Flux that emits a List that contains all the items published by
the source Flux. You can achieve the same thing with the collectList() operation,
illustrated by the marble diagram in figure 11.19.

Rather than produce a Flux that publishes a List, collectList() produces a Mono
that publishes a List. The following test method shows how it might be used:

@Test
public void collectList() {
 Flux<String> fruitFlux = Flux.just(
 "apple", "orange", "banana", "kiwi", "strawberry");

 Mono<List<String>> fruitListMono = fruitFlux.collectList();

 StepVerifier
 .create(fruitListMono)
 .expectNext(Arrays.asList(
 "apple", "orange", "banana", "kiwi", "strawberry"))
 .verifyComplete();
}

An even more interesting way of collecting items emitted by a Flux is to collect them
into a Map. As shown in figure 11.20, the collectMap() operation results in a Mono

collectList

1 2 3 4

1 2 3 4

Figure 11.19 The collectList()
operation results in a Mono containing
a list of all messages emitted by the
incoming Flux.

1 2 3 4 5

collectMap(k())

4 5 3k() k(): , k():: ,

Figure 11.20 The collectMap() operation
results in a Mono containing a map of messages
emitted by the incoming Flux, where the key is
derived from some characteristic of the
incoming messages.

305Applying common reactive operations
that publishes a Map that’s populated with entries whose key is calculated by a given
Function.

 To see collectMap() in action, have a look at the following test method:

@Test
public void collectMap() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Map<Character, String>> animalMapMono =
 animalFlux.collectMap(a -> a.charAt(0));

 StepVerifier
 .create(animalMapMono)
 .expectNextMatches(map -> {
 return
 map.size() == 3 &&
 map.get('a').equals("aardvark") &&
 map.get('e').equals("eagle") &&
 map.get('k').equals("kangaroo");
 })
 .verifyComplete();
}

The source Flux emits the names of a handful of animals. From that Flux, you use
collectMap() to create a new Mono that emits a Map, where the key value is deter-
mined by the first letter of the animal name and the value is the animal name itself.
In the event that two animal names start with the same letter (as with elephant and
eagle or koala and kangaroo), the last entry flowing through the stream overrides any
earlier entries.

11.3.4 Performing logic operations on reactive types

Sometimes you just need to know if the entries published by a Mono or Flux match
some criteria. The all() and any() operations perform such logic. Figures 11.21 and
11.22 illustrate how all() and any() work.

all()

True

Figure 11.21 A Flux can be tested to
ensure that all messages meet some
condition with the all() operation.

306 CHAPTER 11 Introducing Reactor
Suppose you want to know that every String published by a Flux contains the letter a
or the letter k. The following test shows how to use all() to check for that condition:

@Test
public void all() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Boolean> hasAMono = animalFlux.all(a -> a.contains("a"));
 StepVerifier.create(hasAMono)
 .expectNext(true)
 .verifyComplete();

 Mono<Boolean> hasKMono = animalFlux.all(a -> a.contains("k"));
 StepVerifier.create(hasKMono)
 .expectNext(false)
 .verifyComplete();
}

In the first StepVerifier, you check for the letter a. The all operation is applied to
the source Flux, resulting in a Mono of type Boolean. In this case, all of the animal
names contain the letter a, so true is emitted from the resulting Mono. But in the sec-
ond StepVerifier, the resulting Mono will emit false because not all of the animal
names contain a k.

 Rather than perform an all-or-nothing check, maybe you’re satisfied if at least one
entry matches. In that case, the any() operation is what you want. This new test case
uses any() to check for the letters t and z:

@Test
public void any() {
 Flux<String> animalFlux = Flux.just(
 "aardvark", "elephant", "koala", "eagle", "kangaroo");

 Mono<Boolean> hasTMono = animalFlux.any(a -> a.contains("t"));

 StepVerifier.create(hasTMono)
 .expectNext(true)
 .verifyComplete();

any()

False True
Figure 11.22 A Flux can be tested to
ensure that at least one message meets
some condition with the any() operation.

307Summary
 Mono<Boolean> hasZMono = animalFlux.any(a -> a.contains("z"));
 StepVerifier.create(hasZMono)
 .expectNext(false)
 .verifyComplete();
}

In the first StepVerifier, you see that the resulting Mono emits true, because at least
one animal name has the letter t (specifically, elephant). In the second case, the result-
ing Mono emits false, because none of the animal names contain z.

Summary
 Reactive programming involves creating pipelines through which data flows.
 The Reactive Streams specification defines four types: Publisher, Subscriber,

Subscription, and Transformer (which is a combination of Publisher and
Subscriber).

 Project Reactor implements Reactive Streams and abstracts stream definitions
into two primary types, Flux and Mono, each of which offers several hundred
operations.

 Spring leverages Reactor to create reactive controllers, repositories, REST cli-
ents, and other reactive framework support.

Developing reactive APIs
Now that you’ve had a good introduction to reactive programming and Project
Reactor, you’re ready to start applying those techniques in your Spring applica-
tions. In this chapter, we’re going to revisit some of the controllers you wrote in
chapter 7 to take advantage of Spring’s reactive programming model.

 More specifically, we’re going to take a look at Spring’s reactive web frame-
work—Spring WebFlux. As you’ll quickly discover, Spring WebFlux is remarkably
similar to Spring MVC, making it easy to apply, along with what you already know
about building REST APIs in Spring.

This chapter covers
 Using Spring WebFlux

 Writing and testing reactive controllers and
clients

 Consuming REST APIs

 Securing reactive web applications
308

309Working with Spring WebFlux
12.1 Working with Spring WebFlux
Typical servlet web frameworks, such as Spring MVC, are blocking and multithreaded
in nature, using a single thread per connection. As requests are handled, a worker
thread is pulled from a thread pool to process the request. Meanwhile, the request
thread is blocked until it’s notified by the worker thread that it’s finished.

 Consequently, blocking web frameworks won’t scale effectively under heavy
request volume. Latency in slow worker threads makes things even worse because it’ll
take longer for the worker thread to be returned to the pool, ready to handle another
request. In some use cases, this arrangement is perfectly acceptable. In fact, this is
largely how most web applications have been developed for well over a decade. But
times are changing.

 The clients of those web applications have grown from people occasionally viewing
websites to people frequently consuming content and using applications that coordi-
nate with HTTP APIs. And these days, the so-called Internet of Things (where humans
aren’t even involved) yields cars, jet engines, and other nontraditional clients con-
stantly exchanging data with web APIs. With an increasing number of clients consum-
ing web applications, scalability is more important than ever.

 Asynchronous web frameworks, in contrast, achieve higher scalability with fewer
threads—generally one per CPU core. By applying a technique known as event looping
(as illustrated in figure 12.1), these frameworks are able to handle many requests per
thread, making the per-connection cost more economical.

In an event loop, everything is handled as an event, including requests and callbacks
from intensive operations like database and network operations. When a costly opera-
tion is needed, the event loop registers a callback for that operation to be performed
in parallel, while it moves on to handle other events.

CPU core

Thread

Event loop

Push request

event

Trigger

callback

Register

callback

Push operation

complete event

Client

Request

handler

Request

Request

Request
Intensive

operation

Network,

database,

filesystem,

calculation,

etc.

Client

Client

Figure 12.1 Asynchronous web frameworks apply event looping to handle more requests with
fewer threads.

310 CHAPTER 12 Developing reactive APIs
 When the operation is complete, it’s treated as an event by the event loop, the
same as requests. As a result, asynchronous web frameworks are able to scale better
under heavy request volume with fewer threads, resulting in reduced overhead for
thread management.

 Spring offers a nonblocking, asynchronous web framework based largely on its
Project Reactor to address the need for greater scalability in web applications and
APIs. Let’s take a look at Spring WebFlux—a reactive web framework for Spring.

12.1.1 Introducing Spring WebFlux

As the Spring team was considering how to add a reactive programming model to the
web layer, it quickly became apparent that it would be difficult to do so without a great
deal of work in Spring MVC. That would involve branching code to decide whether or
not to handle requests reactively. In essence, the result would be two web frameworks
packaged as one, with if statements to separate the reactive from the nonreactive.

 Instead of trying to shoehorn a reactive programming model into Spring MVC, the
Spring team decided to create a separate reactive web framework, borrowing as much
from Spring MVC as possible. Spring WebFlux is the result. Figure 12.2 illustrates the
complete web development stack available in Spring.

On the left side of figure 12.2, you see the Spring MVC stack that was introduced in
version 2.5 of the Spring Framework. Spring MVC (covered in chapters 2 and 7) sits
atop the Java Servlet API, which requires a servlet container (such as Tomcat) to
execute on.

 By contrast, Spring WebFlux (on the right side) doesn’t have ties to the Servlet
API, so it builds on top of a Reactive HTTP API, which is a reactive approximation of
the same functionality provided by the Servlet API. And because Spring WebFlux isn’t
coupled to the Servlet API, it doesn’t require a servlet container to run on. Instead, it

@Controller @RequestMapping, , etc.

Spring MVC

Ser cvlet ontainer

Spring WebFlux

T , Ser 3.1+,omcat, Jetty vlet

Netty tow, Under

Reactive HTTPServlet API

Router functions

Figure 12.2 Spring supports reactive web applications with a
new web framework called WebFlux, which is a sibling to
Spring MVC and shares many of its core components.

311Working with Spring WebFlux
can run on any nonblocking web container including Netty, Undertow, Tomcat, Jetty,
or any Servlet 3.1 or higher container.

 What’s most noteworthy about figure 12.2 is the top-left box, which represents the
components that are common between Spring MVC and Spring WebFlux, primarily
the annotations used to define controllers. Because Spring MVC and Spring WebFlux
share the same annotations, Spring WebFlux is, in many ways, indistinguishable from
Spring MVC.

 The box in the top-right corner represents an alternative programming model that
defines controllers with a functional programming paradigm instead of using annota-
tions. We’ll talk more about Spring’s functional web programming model in section 12.2.

 The most significant difference between Spring MVC and Spring WebFlux boils
down to which dependency you add to your build. When working with Spring Web-
Flux, you’ll need to add the Spring Boot WebFlux starter dependency instead of the
standard web starter (e.g., spring-boot-starter-web). In the project’s pom.xml file,
it looks like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

NOTE As with most of Spring Boot’s starter dependencies, this starter can
also be added to a project by checking the Reactive Web check box in the
Initializr.

An interesting side effect of using WebFlux instead of Spring MVC is that the default
embedded server for WebFlux is Netty instead of Tomcat. Netty is one of a handful of
asynchronous, event-driven servers and is a natural fit for a reactive web framework
like Spring WebFlux.

 Aside from using a different starter dependency, Spring WebFlux controller meth-
ods usually accept and return reactive types, like Mono and Flux, instead of domain
types and collections. Spring WebFlux controllers can also deal with RxJava types like
Observable, Single, and Completable.

REACTIVE SPRING MVC?
Although Spring WebFlux controllers typically return Mono and Flux, that doesn’t
mean that Spring MVC doesn’t get to have some fun with reactive types. Spring MVC
controller methods can also return a Mono or Flux, if you’d like.

 The difference is in how those types are used. Whereas Spring WebFlux is a truly
reactive web framework, allowing for requests to be handled in an event loop, Spring
MVC is servlet-based, relying on multithreading to handle multiple requests.

 Let’s put Spring WebFlux to work by rewriting some of Taco Cloud’s API control-
lers to take advantage of Spring WebFlux.

312 CHAPTER 12 Developing reactive APIs
12.1.2 Writing reactive controllers

You may recall that in chapter 7, you created a few controllers for Taco Cloud’s REST
API. Those controllers had request-handling methods that dealt with input and out-
put in terms of domain types (such as TacoOrder and Taco) or collections of those
domain types. As a reminder, consider the following snippet from TacoController
that you wrote back in chapter 7:

@RestController
@RequestMapping(path="/api/tacos",
 produces="application/json")
@CrossOrigin(origins="*")
public class TacoController {

...

 @GetMapping(params="recent")
 public Iterable<Taco> recentTacos() {
 PageRequest page = PageRequest.of(
 0, 12, Sort.by("createdAt").descending());
 return tacoRepo.findAll(page).getContent();
 }

...

}

As written, the recentTacos() controller handles HTTP GET requests for /api/
tacos?recent to return a list of recently created tacos. More specifically, it returns an
Iterable of type Taco. That’s primarily because that’s what’s returned from the repos-
itory’s findAll() method, or, more accurately, from the getContent() method on the
Page object returned from findAll().

 That works fine, but Iterable isn’t a reactive type. You won’t be able to apply any
reactive operations on it, nor can you let the framework take advantage of it as a reac-
tive type to split any work over multiple threads. What you’d like is for recentTacos()
to return a Flux<Taco>.

 A simple but somewhat limited option here is to rewrite recentTacos() to convert
the Iterable to a Flux. And, while you’re at it, you can do away with the paging code
and replace it with a call to take() on the Flux as follows:

@GetMapping(params="recent")
public Flux<Taco> recentTacos() {
 return Flux.fromIterable(tacoRepo.findAll()).take(12);
}

Using Flux.fromIterable(), you convert the Iterable<Taco> to a Flux<Taco>. And
now that you’re working with a Flux, you can use the take() operation to limit the
returned Flux to 12 Taco objects at most. Not only is the code simpler, it also deals
with a reactive Flux rather than a plain Iterable.

313Working with Spring WebFlux
 Writing reactive code has been a winning move so far. But it would be even better if
the repository gave you a Flux to start with so that you wouldn’t need to do the con-
version. If that were the case, then recentTacos() could be written to look like this:

@GetMapping(params="recent")
public Flux<Taco> recentTacos() {
 return tacoRepo.findAll().take(12);
}

That’s even better! Ideally, a reactive controller will be the tip of a stack that’s reactive
end to end, including controllers, repositories, the database, and any services that may
sit in between. Such an end-to-end reactive stack is illustrated in figure 12.3.

Such an end-to-end stack requires that the repository be written to return a Flux
instead of an Iterable. We’ll look into writing reactive repositories in the next chap-
ter, but here’s a sneak peek at what a reactive TacoRepository might look like:

package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import tacos.Taco;

public interface TacoRepository
 extends ReactiveCrudRepository<Taco, Long> {
}

What’s most important to note at this point, however, is that aside from working with a
Flux instead of an Iterable, as well as how you obtain that Flux, the programming

Client

WebFlux

Controller
Repository

Flux/Mono

Request/

Response

Flux/Mono

Data

stream

Service

(optional)

Database

Figure 12.3 To maximize the benefit of a reactive web framework,
it should be part of a full end-to-end reactive stack.

314 CHAPTER 12 Developing reactive APIs
model for defining a reactive WebFlux controller is no different than for a nonreac-
tive Spring MVC controller. Both are annotated with @RestController and a high-
level @RequestMapping at the class level. And both have request-handling functions
that are annotated with @GetMapping at the method level. It’s truly a matter of what
type the handler methods return.

 Another important observation to make is that although you’re getting a Flux<Taco>
back from the repository, you can return it without calling subscribe(). Indeed, the
framework will call subscribe() for you. This means that when a request for /api/
tacos?recent is handled, the recentTacos() method will be called and will return
before the data is even fetched from the database!

RETURNING SINGLE VALUES

As another example, consider the following tacoById() method from the Taco-
Controller as it was written in chapter 7:

@GetMapping("/{id}")
public Taco tacoById(@PathVariable("id") Long id) {
 Optional<Taco> optTaco = tacoRepo.findById(id);
 if (optTaco.isPresent()) {
 return optTaco.get();
 }
 return null;
}

Here, this method handles GET requests for /tacos/{id} and returns a single Taco
object. Because the repository’s findById() returns an Optional, you also had to
write some clunky code to deal with that. But suppose for a minute that the find-
ById() returns a Mono<Taco> instead of an Optional<Taco>. In that case, you can
rewrite the controller’s tacoById() to look like this:

@GetMapping("/{id}")
public Mono<Taco> tacoById(@PathVariable("id") Long id) {
 return tacoRepo.findById(id);
}

Wow! That’s a lot simpler. What’s more important, however, is that by returning a
Mono<Taco> instead of a Taco, you’re enabling Spring WebFlux to handle the
response in a reactive manner. Consequently, your API will scale better in response
to heavy loads.

WORKING WITH RXJAVA TYPES

It’s worth pointing out that although Reactor types like Flux and Mono are a natural
choice when working with Spring WebFlux, you can also choose to work with RxJava
types like Observable and Single. For example, suppose there’s a service sitting
between TacoController and the backend repository that deals in terms of RxJava
types. In that case, you might write the recentTacos() method like this:

315Working with Spring WebFlux
@GetMapping(params = "recent")
public Observable<Taco> recentTacos() {
 return tacoService.getRecentTacos();
}

Similarly, the tacoById() method could be written to deal with an RxJava Single
rather than a Mono, as shown next:

@GetMapping("/{id}")
public Single<Taco> tacoById(@PathVariable("id") Long id) {
 return tacoService.lookupTaco(id);
}

In addition, Spring WebFlux controller methods can also return RxJava’s Completable,
which is equivalent to a Mono<Void> in Reactor. WebFlux can also return RxJava’s
Flowable as an alternative to Observable or Reactor’s Flux.

HANDLING INPUT REACTIVELY

So far, we’ve concerned ourselves only with what reactive types the controller methods
return. But with Spring WebFlux, you can also accept a Mono or a Flux as an input to a
handler method. To demonstrate, consider the original implementation of post-
Taco() from TacoController, shown here:

@PostMapping(consumes="application/json")
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
 return tacoRepo.save(taco);
}

As originally written, postTaco() not only returns a simple Taco object but also
accepts a Taco object that’s bound to the content in the body of the request. This
means that postTaco() can’t be invoked until the request payload has been fully
resolved and used to instantiate a Taco object. It also means postTaco() can’t return
until the blocking call to the repository’s save() method returns. In short, the request
is blocked twice: as it enters postTaco() and again, inside of postTaco(). But by
applying a little reactive coding to postTaco(), shown next, you can make it a fully
nonblocking, request-handling method:

@PostMapping(consumes = "application/json")
@ResponseStatus(HttpStatus.CREATED)
public Mono<Taco> postTaco(@RequestBody Mono<Taco> tacoMono) {
 return tacoRepo.saveAll(tacoMono).next();
}

Here, postTaco() accepts a Mono<Taco> and calls the repository’s saveAll() method,
which accepts any implementation of Reactive Streams Publisher, including Mono or
Flux. The saveAll() method returns a Flux<Taco>, but because you started with a

316 CHAPTER 12 Developing reactive APIs
Mono, you know there’s at most one Taco that will be published by the Flux. You can
therefore call next() to obtain a Mono<Taco> that will return from postTaco().

 By accepting a Mono<Taco> as input, the method is invoked immediately without
waiting for the Taco to be resolved from the request body. And because the reposi-
tory is also reactive, it’ll accept a Mono and immediately return a Flux<Taco>, from
which you call next() and return the resulting Mono<Taco> . . . all before the request
is even processed!

 Alternatively, you could also implement postTaco() like this:

@PostMapping(consumes = "application/json")
@ResponseStatus(HttpStatus.CREATED)
public Mono<Taco> postTaco(@RequestBody Mono<Taco> tacoMono) {
 return tacoMono.flatMap(tacoRepo::save);
}

This approach flips things around so that the tacoMono is the driver of the action. The
Taco contained within tacoMono is handed to the repository’s save() method via
flatMap(), resulting in a new Mono<Taco> that is returned.

 Either way works well, and there are probably several other ways that you could
write postTaco(). Choose whichever way works best and makes the most sense to you.

 Spring WebFlux is a fantastic alternative to Spring MVC, offering the option of
writing reactive web applications using the same development model as Spring MVC.
But Spring has another new trick up its sleeve. Let’s take a look at how to create reac-
tive APIs using Spring’s functional programming style.

12.2 Defining functional request handlers
Spring MVC’s annotation-based programming model has been around since Spring
2.5 and is widely popular. It comes with a few downsides, however.

 First, any annotation-based programming involves a split in the definition of what
the annotation is supposed to do and how it’s supposed to do it. Annotations them-
selves define the what; the how is defined elsewhere in the framework code. This divi-
sion complicates the programming model when it comes to any sort of customization
or extension because such changes require working in code that’s external to the
annotation. Moreover, debugging such code is tricky because you can’t set a break-
point on an annotation.

 Also, as Spring continues to grow in popularity, developers new to Spring from
other languages and frameworks may find annotation-based Spring MVC (and Web-
Flux) quite unlike what they already know. As an alternative to WebFlux, Spring offers
a functional programming model for defining reactive APIs.

 This new programming model is used more like a library and less like a frame-
work, letting you map requests to handler code without annotations. Writing an
API using Spring’s functional programming model involves the following four pri-
mary types:

317Defining functional request handlers
 RequestPredicate—Declares the kind(s) of requests that will be handled
 RouterFunction—Declares how a matching request should be routed to the

handler code
 ServerRequest—Represents an HTTP request, including access to header and

body information
 ServerResponse—Represents an HTTP response, including header and body

information

As a simple example that pulls all of these types together, consider the following Hello
World example:

package hello;

import static org.springframework.web
 .reactive.function.server.RequestPredicates.GET;
import static org.springframework.web
 .reactive.function.server.RouterFunctions.route;
import static org.springframework.web
 .reactive.function.server.ServerResponse.ok;
import static reactor.core.publisher.Mono.just;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.reactive.function.server.RouterFunction;

@Configuration
public class RouterFunctionConfig {

 @Bean
 public RouterFunction<?> helloRouterFunction() {
 return route(GET("/hello"),
 request -> ok().body(just("Hello World!"), String.class))
 ;
 }

}

The first thing to notice is that you’ve chosen to statically import a few helper classes
that you can use to create the aforementioned functional types. You’ve also statically
imported Mono to keep the rest of the code easier to read and understand.

 In this @Configuration class, you have a single @Bean method of type Router-
Function<?>. As mentioned, a RouterFunction declares mappings between one or more
RequestPredicate objects and the functions that will handle the matching request(s).

 The route() method from RouterFunctions accepts two parameters: a Request-
Predicate and a function to handle matching requests. In this case, the GET()
method from RequestPredicates declares a RequestPredicate that matches HTTP
GET requests for the /hello path.

 As for the handler function, it’s written as a lambda, although it can also be a
method reference. Although it isn’t explicitly declared, the handler lambda accepts a

318 CHAPTER 12 Developing reactive APIs
ServerRequest as a parameter. It returns a ServerResponse using ok() from Server-
Response and body() from BodyBuilder, which was returned from ok(). This was
done to create a response with an HTTP 200 (OK) status code and a body payload
that says "Hello World!"

 As written, the helloRouterFunction() method declares a RouterFunction that
handles only a single kind of request. But if you need to handle a different kind of
request, you don’t have to write another @Bean method, although you can. You only
need to call andRoute() to declare another RequestPredicate to function mapping.
For example, here’s how you might add another handler for GET requests for /bye:

@Bean
public RouterFunction<?> helloRouterFunction() {
 return route(GET("/hello"),
 request -> ok().body(just("Hello World!"), String.class))
 .andRoute(GET("/bye"),
 request -> ok().body(just("See ya!"), String.class))
 ;
}

Hello World samples are fine for dipping your toes into something new. But let’s amp
it up a bit and see how to use Spring’s functional web programming model to handle
requests that resemble real-world scenarios.

 To demonstrate how the functional programming model might be used in a real-
world application, let’s reinvent the functionality of TacoController in the functional
style. The following configuration class is a functional analog to TacoController:

package tacos.web.api;

import static org.springframework.web.reactive.function.server
.RequestPredicates.GET;

import static org.springframework.web.reactive.function.server
.RequestPredicates.POST;

import static org.springframework.web.reactive.function.server
.RequestPredicates.queryParam;

import static org.springframework.web.reactive.function.server
.RouterFunctions.route;

import java.net.URI;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;

import reactor.core.publisher.Mono;
import tacos.Taco;
import tacos.data.TacoRepository;

319Defining functional request handlers
@Configuration
public class RouterFunctionConfig {

 @Autowired
 private TacoRepository tacoRepo;

 @Bean
 public RouterFunction<?> routerFunction() {
 return route(GET("/api/tacos").
 and(queryParam("recent", t->t != null)),
 this::recents)
 .andRoute(POST("/api/tacos"), this::postTaco);
 }

 public Mono<ServerResponse> recents(ServerRequest request) {
 return ServerResponse.ok()
 .body(tacoRepo.findAll().take(12), Taco.class);
 }

 public Mono<ServerResponse> postTaco(ServerRequest request) {
 return request.bodyToMono(Taco.class)
 .flatMap(taco -> tacoRepo.save(taco))
 .flatMap(savedTaco -> {
 return ServerResponse
 .created(URI.create(
 "http:/ /localhost:8080/api/tacos/" +
 savedTaco.getId()))
 .body(savedTaco, Taco.class);
 });
 }
}

As you can see, the routerFunction() method declares a RouterFunction<?> bean,
like the Hello World example. But it differs in what types of requests are handled and
how they’re handled. In this case, the RouterFunction is created to handle GET
requests for /api/tacos?recent and POST requests for /api/tacos.

 What stands out even more is that the routes are handled by method references.
Lambdas are great when the behavior behind a RouterFunction is relatively simple and
brief. In many cases, however, it’s better to extract that functionality into a separate
method (or even into a separate method in a separate class) to maintain code readability.

 For your needs, GET requests for /api/tacos?recent will be handled by the
recents() method. It uses the injected TacoRepository to fetch a Flux<Taco>, from
which it takes 12 items. It then wraps the Flux<Taco> in a Mono<ServerResponse> so
that we can ensure that the response has an HTTP 200 (OK) status by calling ok() on
the ServerResponse. It’s important to understand that even though up to 12 tacos are
returned, there is only one server response—that’s why it is returned in a Mono and
not a Flux. Internally, Spring will still stream the Flux<Taco> to the client as a Flux.

 Meanwhile, POST requests for /api/tacos are handled by the postTaco() method,
which extracts a Mono<Taco> from the body of the incoming ServerRequest. The

320 CHAPTER 12 Developing reactive APIs
postTaco() method then uses a series of flatMap() operations to save that taco to the
TacoRepository and create a ServerResponse with an HTTP 201 (CREATED) status
code and the saved Taco object in the response body.

 The flatMap() operations are used to ensure that at each step in the flow, the
result of the mapping is wrapped in a Mono, starting with a Mono<Taco> after the first
flatMap() and ultimately ending with a Mono<ServerResponse> that is returned from
postTaco().

12.3 Testing reactive controllers
When it comes to testing reactive controllers, Spring hasn’t left us in the lurch.
Indeed, Spring has introduced WebTestClient, a new test utility that makes it easy to
write tests for reactive controllers written with Spring WebFlux. To see how to write
tests with WebTestClient, let’s start by using it to test the recentTacos() method from
the TacoController that you wrote in section 12.1.2.

12.3.1 Testing GET requests

One thing we’d like to assert about the recentTacos() method is that if an HTTP
GET request is issued for the path /api/tacos?recent, then the response will contain
a JSON payload with no more than 12 tacos. The test class in the next listing is a
good start.

package tacos.web.api;
import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.when;
import java.util.ArrayList;
import java.util.List;
import org.junit.jupiter.api.Test;
import org.mockito.Mockito;
import org.springframework.http.MediaType;
import org.springframework.test.web.reactive.server.WebTestClient;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import tacos.Ingredient;
import tacos.Ingredient.Type;
import tacos.Taco;
import tacos.data.TacoRepository;

public class TacoControllerTest {

 @Test
 public void shouldReturnRecentTacos() {
 Taco[] tacos = {
 testTaco(1L), testTaco(2L),
 testTaco(3L), testTaco(4L),
 testTaco(5L), testTaco(6L),
 testTaco(7L), testTaco(8L),

Listing 12.1 Using WebTestClient to test TacoController

Creates some
test data

321Testing reactive controllers
 testTaco(9L), testTaco(10L),
 testTaco(11L), testTaco(12L),
 testTaco(13L), testTaco(14L),
 testTaco(15L), testTaco(16L)};
 Flux<Taco> tacoFlux = Flux.just(tacos);

 TacoRepository tacoRepo = Mockito.mock(TacoRepository.class);
 when(tacoRepo.findAll()).thenReturn(tacoFlux);

 WebTestClient testClient = WebTestClient.bindToController(
 new TacoController(tacoRepo))
 .build();

 testClient.get().uri("/api/tacos?recent")
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .jsonPath("$").isArray()
 .jsonPath("$").isNotEmpty()
 .jsonPath("$[0].id").isEqualTo(tacos[0].getId().toString())
 .jsonPath("$[0].name").isEqualTo("Taco 1")
 .jsonPath("$[1].id").isEqualTo(tacos[1].getId().toString())
 .jsonPath("$[1].name").isEqualTo("Taco 2")
 .jsonPath("$[11].id").isEqualTo(tacos[11].getId().toString())
 .jsonPath("$[11].name").isEqualTo("Taco 12")
 .jsonPath("$[12]").doesNotExist();
 }

 ...

}

The first thing that the shouldReturnRecentTacos() method does is set up test data
in the form of a Flux<Taco>. This Flux is then provided as the return value from the
findAll() method of a mock TacoRepository.

 With regard to the Taco objects that will be published by Flux, they’re created with
a utility method named testTaco() that, when given a number, produces a Taco
object whose ID and name are based on that number. The testTaco() method is
implemented as follows:

private Taco testTaco(Long number) {
 Taco taco = new Taco();
 taco.setId(number != null ? number.toString(): "TESTID");
 taco.setName("Taco " + number);
 List<Ingredient> ingredients = new ArrayList<>();
 ingredients.add(
 new Ingredient("INGA", "Ingredient A", Type.WRAP));
 ingredients.add(
 new Ingredient("INGB", "Ingredient B", Type.PROTEIN));
 taco.setIngredients(ingredients);
 return taco;
}

Mocks the
TacoRepository

Creates a WebTestClient

Requests
recent tacos

Verifies the expected
response

322 CHAPTER 12 Developing reactive APIs
For the sake of simplicity, all test tacos will have the same two ingredients. But their ID
and name will be determined by the given number.

 Meanwhile, back in the shouldReturnRecentTacos() method, you instantiated a
TacoController, injecting the mock TacoRepository into the constructor. The con-
troller is given to WebTestClient.bindToController() to create an instance of
WebTestClient.

 With all of the setup complete, you’re now ready to use WebTestClient to submit a
GET request to /api/tacos?recent and verify that the response meets your expecta-
tions. Calling get().uri("/api/tacos?recent") describes the request you want to
issue. Then a call to exchange() submits the request, which will be handled by the
controller that WebTestClient is bound to—the TacoController.

 Finally, you can affirm that the response is as expected. By calling expectStatus(),
you assert that the response has an HTTP 200 (OK) status code. After that, you see
several calls to jsonPath() that assert that the JSON in the response body has the val-
ues it should have. The final assertion checks that the 12th element (in a zero-based
array) is nonexistent, because the result should never have more than 12 elements.

 If the JSON returns are complex, with a lot of data or highly nested data, it can be
tedious to use jsonPath(). In fact, I left out many of the calls to jsonPath() in listing
12.1 to conserve space. For those cases where it may be clumsy to use jsonPath(),
WebTestClient offers json(), which accepts a String parameter containing the JSON
to compare the response against.

 For example, suppose that you’ve created the complete response JSON in a file
named recent-tacos.json and placed it in the classpath under the path /tacos. Then
you can rewrite the WebTestClient assertions to look like this:

ClassPathResource recentsResource =
 new ClassPathResource("/tacos/recent-tacos.json");
String recentsJson = StreamUtils.copyToString(
 recentsResource.getInputStream(), Charset.defaultCharset());

testClient.get().uri("/api/tacos?recent")
 .accept(MediaType.APPLICATION_JSON)
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .json(recentsJson);

Because json() accepts a String, you must first load the classpath resource into a
String. Thankfully, Spring’s StreamUtils makes this easy with copyToString(). The
String that’s returned from copyToString() will contain the entire JSON you expect
in the response to your request. Giving it to the json() method ensures that the con-
troller is producing the correct output.

 Another option offered by WebTestClient allows you to compare the response
body with a list of values. The expectBodyList() method accepts either a Class or a
ParameterizedTypeReference indicating the type of elements in the list and returns

323Testing reactive controllers
a ListBodySpec object to make assertions against. Using expectBodyList(), you can
rewrite the test to use a subset of the same test data you used to create the mock
TacoRepository, as shown here:

testClient.get().uri("/api/tacos?recent")
 .accept(MediaType.APPLICATION_JSON)
 .exchange()
 .expectStatus().isOk()
 .expectBodyList(Taco.class)
 .contains(Arrays.copyOf(tacos, 12));

Here you assert that the response body contains a list that has the same elements as
the first 12 elements of the original Taco array you created at the beginning of the
test method.

12.3.2 Testing POST requests

WebTestClient can do more than just test GET requests against controllers. It can also
be used to test any kind of HTTP method. Table 12.1 maps HTTP methods to Web-
TestClient methods.

As an example of testing another HTTP method request against a Spring WebFlux
controller, let’s look at another test against TacoController. This time, you’ll write a
test of your API’s taco creation endpoint by submitting a POST request to /api/tacos
as follows:

@SuppressWarnings("unchecked")
@Test
public void shouldSaveATaco() {
 TacoRepository tacoRepo = Mockito.mock(
 TacoRepository.class);

 WebTestClient testClient = WebTestClient.bindToController(
 new TacoController(tacoRepo)).build();

Table 12.1 WebTestClient tests any kind of request against
Spring WebFlux controllers.

HTTP method WebTestClient method

GET .get()

POST .post()

PUT .put()

PATCH .patch()

DELETE .delete()

HEAD .head()

Mocks the
TacoRepository

Creates a WebTestClient

324 CHAPTER 12 Developing reactive APIs
 Mono<Taco> unsavedTacoMono = Mono.just(testTaco(1L));
 Taco savedTaco = testTaco(1L);
 Flux<Taco> savedTacoMono = Flux.just(savedTaco);

 when(tacoRepo.saveAll(any(Mono.class))).thenReturn(savedTacoMono);

 testClient.post()
 .uri("/api/tacos")
 .contentType(MediaType.APPLICATION_JSON)
 .body(unsavedTacoMono, Taco.class)
 .exchange()
 .expectStatus().isCreated()
 .expectBody(Taco.class)
 .isEqualTo(savedTaco);
}

As with the previous test method, shouldSaveATaco() starts by mocking Taco-
Repository, building a WebTestClient that’s bound to the controller, and setting up
some test data. Then, it uses the WebTestClient to submit a POST request to /api/tacos,
with a body of type application/json and a payload that’s a JSON-serialized form of
the Taco in the unsaved Mono. After performing exchange(), the test asserts that the
response has an HTTP 201 (CREATED) status and a payload in the body equal to the
saved Taco object.

12.3.3 Testing with a live server

The tests you’ve written so far have relied on a mock implementation of the Spring
WebFlux framework so that a real server wouldn’t be necessary. But you may need to
test a WebFlux controller in the context of a server like Netty or Tomcat and maybe
with a repository or other dependencies. That is to say, you may want to write an inte-
gration test.

 To write a WebTestClient integration test, you start by annotating the test class
with @RunWith and @SpringBootTest like any other Spring Boot integration test, as
shown here:

package tacos;

import java.io.IOException;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit.jupiter.SpringExtension;
import org.springframework.test.web.reactive.server.WebTestClient;

@ExtendWith(SpringExtension.class)
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class TacoControllerWebTest {

Sets up test data

POSTs a taco

Verifies the
response

325Consuming REST APIs reactively
 @Autowired
 private WebTestClient testClient;

}

By setting the webEnvironment attribute to WebEnvironment.RANDOM_PORT, you’re ask-
ing Spring to start a running server listening on a randomly chosen port.1

 You’ll notice that you’ve also autowired a WebTestClient into the test class. This
not only means that you’ll no longer have to create one in your test methods but also
that you won’t need to specify a full URL when making requests. That’s because the
WebTestClient will be rigged to know which port the test server is running on. Now
you can rewrite shouldReturnRecentTacos() as an integration test that uses the
autowired WebTestClient as follows:

@Test
public void shouldReturnRecentTacos() throws IOException {
 testClient.get().uri("/api/tacos?recent")
 .accept(MediaType.APPLICATION_JSON).exchange()
 .expectStatus().isOk()
 .expectBody()
 .jsonPath("$").isArray()
 .jsonPath("$.length()").isEqualTo(3)
 .jsonPath("$[?(@.name == 'Carnivore')]").exists()
 .jsonPath("$[?(@.name == 'Bovine Bounty')]").exists()
 .jsonPath("$[?(@.name == 'Veg-Out')]").exists();
}

You’ve no doubt noticed that this new version of shouldReturnRecentTacos() has
much less code. You no longer need to create a WebTestClient because you’ll be mak-
ing use of the autowired instance. And you don’t have to mock TacoRepository
because Spring will create an instance of TacoController and inject it with a real
TacoRepository. In this new version of the test method, you use JSONPath expres-
sions to verify values served from the database.

 WebTestClient is useful when, in the course of a test, you need to consume the
API exposed by a WebFlux controller. But what about when your application itself
consumes some other API? Let’s turn our attention to the client side of Spring’s reac-
tive web story and see how WebClient provides a REST client that deals in reactive
types such as Mono and Flux.

12.4 Consuming REST APIs reactively
In chapter 8, you used RestTemplate to make client requests to the Taco Cloud API.
RestTemplate is an old-timer, having been introduced in Spring version 3.0. In its time,
it has been used to make countless requests on behalf of the applications that employ it.

1 You could have also set webEnvironment to WebEnvironment.DEFINED_PORT and specified a port with the
properties attribute, but that’s generally inadvisable. Doing so opens the risk of a port clash with a concur-
rently running server.

326 CHAPTER 12 Developing reactive APIs
 But all of the methods provided by RestTemplate deal in nonreactive domain
types and collections. This means that if you want to work with a response’s data in a
reactive way, you’ll need to wrap it with a Flux or Mono. And if you already have a Flux
or Mono and you want to send it in a POST or PUT request, then you’ll need to extract
the data into a nonreactive type before making the request.

 It would be nice if there was a way to use RestTemplate natively with reactive
types. Fear not. Spring offers WebClient as a reactive alternative to RestTemplate.
WebClient lets you both send and receive reactive types when making requests to
external APIs.

 Using WebClient is quite different from using RestTemplate. Rather than having
several methods to handle different kinds of requests, WebClient has a fluent builder-
style interface that lets you describe and send requests. The general usage pattern for
working with WebClient follows:

 Create an instance of WebClient (or inject a WebClient bean)
 Specify the HTTP method of the request to send
 Specify the URI and any headers that should be in the request
 Submit the request
 Consume the response

Let’s look at several examples of WebClient in action, starting with how to use Web-
Client to send HTTP GET requests.

12.4.1 GETting resources

As an example of WebClient usage, suppose that you need to fetch an Ingredient
object by its ID from the Taco Cloud API. Using RestTemplate, you might use the get-
ForObject() method. But with WebClient, you build the request, retrieve a response,
and then extract a Mono that publishes the Ingredient object, as shown here:

Mono<Ingredient> ingredient = WebClient.create()
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

ingredient.subscribe(i -> { ... });

Here you create a new WebClient instance with create(). Then you use get() and
uri() to define a GET request to http://localhost:8080/ingredients/{id}, where the
{id} placeholder will be replaced by the value in ingredientId. The retrieve()
method executes the request. Finally, a call to bodyToMono() extracts the response’s
body payload into a Mono<Ingredient> on which you can continue applying addi-
tional Mono operations.

 To apply additional operations on the Mono returned from bodyToMono(), it’s
important to subscribe to it before the request will even be sent. Making requests that

327Consuming REST APIs reactively
can return a collection of values is easy. For example, the following snippet of code
fetches all ingredients:

Flux<Ingredient> ingredients = WebClient.create()
 .get()
 .uri("http:/ /localhost:8080/ingredients")
 .retrieve()
 .bodyToFlux(Ingredient.class);

ingredients.subscribe(i -> { ... });

For the most part, fetching multiple items is the same as making a request for a single
item. The big difference is that instead of using bodyToMono() to extract the response’s
body into a Mono, you use bodyToFlux() to extract it into a Flux.

 As with bodyToMono(), the Flux returned from bodyToFlux() hasn’t yet been sub-
scribed to. This allows additional operations (filters, maps, and so forth) to be applied
to the Flux before the data starts flowing through it. Therefore, it’s important to sub-
scribe to the resulting Flux, or else the request will never even be sent.

MAKING REQUESTS WITH A BASE URI
You may find yourself using a common base URI for many different requests. In that
case, it can be useful to create a WebClient bean with a base URI and inject it any-
where it’s needed. Such a bean could be declared like this (in any @Configuration-
annotated class):

@Bean
public WebClient webClient() {
 return WebClient.create("http:/ /localhost:8080");
}

Then, anywhere you need to make requests using that base URI, the WebClient bean
can be injected and used like this:

@Autowired
WebClient webClient;

public Mono<Ingredient> getIngredientById(String ingredientId) {
 Mono<Ingredient> ingredient = webClient
 .get()
 .uri("/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

 ingredient.subscribe(i -> { ... });
}

Because the WebClient had already been created, you’re able to get right to work by
calling get(). As for the URI, you need to specify only the path relative to the base
URI when calling uri().

328 CHAPTER 12 Developing reactive APIs
TIMING OUT ON LONG-RUNNING REQUESTS

One thing that you can count on is that networks aren’t always reliable or as fast
as you’d expect them to be. Or maybe a remote server is sluggish in handling a
request. Ideally, a request to a remote service will return in a reasonable amount of
time. But if not, it would be great if the client didn’t get stuck waiting on a response
for too long.

 To avoid having your client requests held up by a sluggish network or service, you
can use the timeout() method from Flux or Mono to put a limit on how long you’ll
wait for data to be published. As an example, consider how you might use timeout()
when fetching ingredient data, as shown in the next code sample:

Flux<Ingredient> ingredients = webclient
 .get()
 .uri("/ingredients")
 .retrieve()
 .bodyToFlux(Ingredient.class);

ingredients
 .timeout(Duration.ofSeconds(1))
 .subscribe(
 i -> { ... },
 e -> {
 // handle timeout error
 });

As you can see, before subscribing to the Flux, you called timeout(), specifying a
duration of 1 second. If the request can be fulfilled in less than 1 second, then there’s
no problem. But if the request is taking longer than 1 second, it’ll time-out, and the
error handler given as the second parameter to subscribe() is invoked.

12.4.2 Sending resources

Sending data with WebClient isn’t much different from receiving data. As an example,
let’s say that you have a Mono<Ingredient> and want to send a POST request with the
Ingredient that’s published by the Mono to the URI with a relative path of /ingredi-
ents. All you must do is use the post() method instead of get() and specify that the
Mono is to be used to populate the request body by calling body() as follows:

Mono<Ingredient> ingredientMono = Mono.just(
 new Ingredient("INGC", "Ingredient C", Ingredient.Type.VEGGIES));

Mono<Ingredient> result = webClient
 .post()
 .uri("/ingredients")
 .body(ingredientMono, Ingredient.class)
 .retrieve()
 .bodyToMono(Ingredient.class);

result.subscribe(i -> { ... });

329Consuming REST APIs reactively
If you don’t have a Mono or Flux to send, but instead have the raw domain object on
hand, you can use bodyValue(). For example, suppose that instead of a Mono
<Ingredient>, you have an Ingredient that you want to send in the request body, as
shown next:

Ingredient ingredient = ...;

Mono<Ingredient> result = webClient
 .post()
 .uri("/ingredients")
 .bodyValue(ingredient)
 .retrieve()
 .bodyToMono(Ingredient.class);

result.subscribe(i -> { ... });

Instead of a POST request, if you want to update an Ingredient with a PUT request, you
call put() instead of post() and adjust the URI path accordingly, like so:

Mono<Void> result = webClient
 .put()
 .uri("/ingredients/{id}", ingredient.getId())
 .bodyValue(ingredient)
 .retrieve()
 .bodyToMono(Void.class);

result.subscribe();

PUT requests typically have empty response payloads, so you must ask bodyToMono() to
return a Mono of type Void. On subscribing to that Mono, the request will be sent.

12.4.3 Deleting resources

WebClient also allows the removal of resources by way of its delete() method. For
example, the following code deletes an ingredient for a given ID:

Mono<Void> result = webClient
 .delete()
 .uri("/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Void.class);

result.subscribe();

As with PUT requests, DELETE requests don’t typically have a payload. Once again, you
return and subscribe to a Mono<Void> to send the request.

12.4.4 Handling errors

All of the WebClient examples thus far have assumed a happy ending; there were no
responses with 400-level or 500-level status codes. Should either kind of error statuses
be returned, WebClient will log the failure and move on without incident.

330 CHAPTER 12 Developing reactive APIs
 If you need to handle such errors, then a call to onStatus() can be used to specify
how various HTTP status codes should be dealt with. onStatus() accepts two func-
tions: a predicate function, which is used to match the HTTP status, and a function
that, given a ClientResponse object, returns a Mono<Throwable>.

 To demonstrate how onStatus() can be used to create a custom error handler,
consider the following use of WebClient that aims to fetch an ingredient given its ID:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

As long as the value in ingredientId matches a known ingredient resource, then the
resulting Mono will publish the Ingredient object when it’s subscribed to. But what
would happen if there were no matching ingredient?

 When subscribing to a Mono or Flux that might end in an error, it’s important to
register an error consumer as well as a data consumer in the call to subscribe() as
follows:

ingredientMono.subscribe(
 ingredient -> {
 // handle the ingredient data
 ...
 },
 error-> {
 // deal with the error
 ...
 });

If the ingredient resource is found, then the first lambda (the data consumer) given
to subscribe() is invoked with the matching Ingredient object. But if it isn’t found,
then the request responds with a status code of HTTP 404 (NOT FOUND), which
results in the second lambda (the error consumer) being given by default a Web-
ClientResponseException.

 The biggest problem with WebClientResponseException is that it’s rather nonspe-
cific as to what may have gone wrong to cause the Mono to fail. Its name suggests that
there was an error in the response from a request made by WebClient, but you’ll need
to dig into WebClientResponseException to know what went wrong. And in any
event, it would be nice if the exception given to the error consumer were more
domain-specific instead of WebClient-specific.

 By adding a custom error handler, you can provide code that translates a status
code to a Throwable of your own choosing. Let’s say that you want a failed request for
an ingredient resource to cause the Mono to complete in error with an Unknown-
IngredientException. You can add the following call to onStatus() after the call to
retrieve() to achieve that:

331Consuming REST APIs reactively
Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .onStatus(HttpStatus::is4xxClientError,
 response -> Mono.just(new UnknownIngredientException()))
 .bodyToMono(Ingredient.class);

The first argument in the onStatus() call is a predicate that’s given an HttpStatus
and returns true if the status code is one you want to handle. And if the status code
matches, then the response will be returned to the function in the second argument
to handle as it sees fit, ultimately returning a Mono of type Throwable.

 In the example, if the status code is a 400-level status code (e.g., a client error),
then a Mono will be returned with an UnknownIngredientException. This causes the
ingredientMono to fail with that exception.

 Note that HttpStatus::is4xxClientError is a method reference to the is4xx-
ClientError method of HttpStatus. It’s this method that will be invoked on the
given HttpStatus object. If you want, you can use another method on HttpStatus as a
method reference; or you can provide your own function in the form of a lambda or
method reference that returns a boolean.

 For example, you can get even more precise in your error handling, checking specif-
ically for an HTTP 404 (NOT FOUND) status by changing the call to onStatus() to
look like this:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .onStatus(status -> status == HttpStatus.NOT_FOUND,
 response -> Mono.just(new UnknownIngredientException()))
 .bodyToMono(Ingredient.class);

It’s also worth noting that you can have as many calls to onStatus() as you need to
handle any variety of HTTP status codes that might come back in the response.

12.4.5 Exchanging requests

Up to this point, you’ve used the retrieve() method to signify sending a request
when working with WebClient. In those cases, the retrieve() method returned an
object of type ResponseSpec, through which you were able to handle the response
with calls to methods such as onStatus(), bodyToFlux(), and bodyToMono(). Working
with ResponseSpec is fine for simple cases, but it’s limited in a few ways. If you need
access to the response’s headers or cookie values, for example, then ResponseSpec
isn’t going to work for you.

 When ResponseSpec comes up short, you can try calling exchangeToMono() or
exchangeToFlux() instead of retrieve(). The exchangeToMono() method returns a
Mono of type ClientResponse, on which you can apply reactive operations to inspect

332 CHAPTER 12 Developing reactive APIs
and use data from the entire response, including the payload, headers, and cookies.
The exchangeToFlux() method works much the same way but returns a Flux of type
ClientResponse for working with multiple data items in the response.

 Before we look at what makes exchangeToMono() and exchangeToFlux() different
from retrieve(), let’s start by looking at how similar they are. The following snippet
of code uses a WebClient and exchangeToMono() to fetch a single ingredient by the
ingredient’s ID:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .exchangeToMono(cr -> cr.bodyToMono(Ingredient.class));

This is roughly equivalent to the next example that uses retrieve():

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .retrieve()
 .bodyToMono(Ingredient.class);

In the exchangeToMono() example, rather than use the ResponseSpec object’s body-
ToMono() to get a Mono<Ingredient>, you get a Mono<ClientResponse> on which you
can apply a flat-mapping function to map the ClientResponse to a Mono<Ingredient>,
which is flattened into the resulting Mono.

 Let’s see what makes exchangeToMono() different from retrieve(). Let’s suppose
that the response from the request might include a header named X_UNAVAILABLE with
a value of true to indicate that (for some reason) the ingredient in question is unavail-
able. And for the sake of discussion, suppose that if that header exists, you want the
resulting Mono to be empty—to not return anything. You can achieve this scenario by
adding another call to flatMap(), but now it’s simpler with a WebClient call like this:

Mono<Ingredient> ingredientMono = webClient
 .get()
 .uri("http:/ /localhost:8080/ingredients/{id}", ingredientId)
 .exchangeToMono(cr -> {
 if (cr.headers().header("X_UNAVAILABLE").contains("true")) {
 return Mono.empty();
 }
 return Mono.just(cr);
 })
 .flatMap(cr -> cr.bodyToMono(Ingredient.class));

The new flatMap() call inspects the given ClientRequest object’s headers, looking
for a header named X_UNAVAILABLE with a value of true. If found, it returns an empty
Mono. Otherwise, it returns a new Mono that contains the ClientResponse. In either
event, the Mono returned will be flattened into the Mono that the next flatMap() call
will operate on.

333Securing reactive web APIs
12.5 Securing reactive web APIs
For as long as there has been Spring Security (and even before that, when it was
known as Acegi Security), its web security model has been built around servlet filters.
After all, it just makes sense. If you need to intercept a request bound for a servlet-
based web framework to ensure that the requester has proper authority, a servlet filter
is an obvious choice. But Spring WebFlux puts a kink into that approach.

 When writing a web application with Spring WebFlux, there’s no guarantee that
servlets are even involved. In fact, a reactive web application is debatably more likely
to be built on Netty or some other nonservlet server. Does this mean that the servlet
filter–based Spring Security can’t be used to secure Spring WebFlux applications?

 It’s true that using servlet filters isn’t an option when securing a Spring WebFlux
application. But Spring Security is still up to the task. Starting with version 5.0.0, you
can use Spring Security to secure both servlet-based Spring MVC and reactive Spring
WebFlux applications. It does this using Spring’s WebFilter, a Spring-specific analog
to servlet filters that doesn’t demand dependence on the servlet API.

 What’s even more remarkable, though, is that the configuration model for reactive
Spring Security isn’t much different from what you saw in chapter 4. In fact, unlike
Spring WebFlux, which has a separate dependency from Spring MVC, Spring Security
comes as the same Spring Boot security starter, regardless of whether you intend to
use it to secure a Spring MVC web application or one written with Spring WebFlux. As
a reminder, here’s what the security starter looks like:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

That said, a few small differences exist between Spring Security’s reactive and nonre-
active configuration models. It’s worth taking a quick look at how the two configura-
tion models compare.

12.5.1 Configuring reactive web security

As a reminder, configuring Spring Security to secure a Spring MVC web application
typically involves creating a new configuration class that extends WebSecurity-
ConfigurerAdapter and is annotated with @EnableWebSecurity. Such a configuration
class would override a configuration() method to specify web security specifics such
as what authorizations are required for certain request paths. The following simple
Spring Security configuration class serves as a reminder of how to configure security
for a nonreactive Spring MVC application:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

334 CHAPTER 12 Developing reactive APIs
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/api/tacos", "/orders").hasAuthority("USER")
 .antMatchers("/**").permitAll();
 }

}

Now let’s see what this same configuration might look like for a reactive Spring Web-
Flux application. The following listing shows a reactive security configuration class
that’s roughly equivalent to the simple security configuration from before.

@Configuration
@EnableWebFluxSecurity
public class SecurityConfig {

 @Bean
 public SecurityWebFilterChain securityWebFilterChain(
 ServerHttpSecurity http) {
 return http
 .authorizeExchange()
 .pathMatchers("/api/tacos", "/orders").hasAuthority("USER")
 .anyExchange().permitAll()
 .and()
 .build();
 }

}

As you can see, there’s a lot that’s familiar, though, at the same time, much is differ-
ent. Rather than @EnableWebSecurity, this new configuration class is annotated with
@EnableWebFluxSecurity. What’s more, the configuration class doesn’t extend Web-
SecurityConfigurerAdapter or any other base class whatsoever. Therefore, it also
doesn’t override any configure() methods.

 In place of a configure() method, you declare a bean of type SecurityWeb-
FilterChain with the securityWebFilterChain() method. The body of securityWeb-
FilterChain() isn’t much different from the previous configuration’s configure()
method, but there are some subtle changes.

 Primarily, the configuration is declared using a given ServerHttpSecurity object
instead of an HttpSecurity object. Using the given ServerHttpSecurity, you can call
authorizeExchange(), which is roughly equivalent to authorizeRequests(), to
declare request-level security.

NOTE ServerHttpSecurity is new to Spring Security 5 and is the reactive
analog to HttpSecurity.

Listing 12.2 Configuring Spring Security for a Spring WebFlux application

335Securing reactive web APIs
When matching paths, you can still use Ant-style wildcard paths, but do so with the
pathMatchers() method instead of antMatchers(). And as a convenience, you no
longer need to specify a catchall Ant-style path of /** because the anyExchange()
returns the catchall you need.

 Finally, because you’re declaring the SecurityWebFilterChain as a bean instead
of overriding a framework method, you must call the build() method to assemble all
of the security rules into the SecurityWebFilterChain to be returned.

 Aside from those small differences, configuring web security isn’t that different for
Spring WebFlux than for Spring MVC. But what about user details?

12.5.2 Configuring a reactive user details service

When extending WebSecurityConfigurerAdapter, you override one configure()
method to declare web security rules and another configure() method to configure
authentication logic, typically by defining a UserDetails object. As a reminder of
what this looks like, consider the following overridden configure() method that uses
an injected UserRepository object in an anonymous implementation of User-
DetailsService to look up a user by username:

@Autowired
UserRepository userRepo;

@Override
protected void
 configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .userDetailsService(new UserDetailsService() {
 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException {
 User user = userRepo.findByUsername(username)
 if (user == null) {
 throw new UsernameNotFoundException(
 username " + not found")
 }
 return user.toUserDetails();
 }
 });
}

In this nonreactive configuration, you override the only method required by User-
DetailsService: loadUserByUsername(). Inside of that method, you use the given
UserRepository to look up the user by the given username. If the name isn’t found,
you throw a UsernameNotFoundException. But if it’s found, then you call a helper
method, toUserDetails(), to return the resulting UserDetails object.

 In a reactive security configuration, you don’t override a configure() method.
Instead, you declare a ReactiveUserDetailsService bean. ReactiveUserDetails-
Service is the reactive equivalent to UserDetailsService. Like UserDetailsService,

336 CHAPTER 12 Developing reactive APIs
ReactiveUserDetailsService requires implementation of only a single method. Spe-
cifically, the findByUsername() method returns a Mono<UserDetails> instead of a raw
UserDetails object.

 In the following example, the ReactiveUserDetailsService bean is declared to
use a given UserRepository, which is presumed to be a reactive Spring Data reposi-
tory (which we’ll talk more about in the next chapter):

@Bean
public ReactiveUserDetailsService userDetailsService(
 UserRepository userRepo) {
 return new ReactiveUserDetailsService() {
 @Override
 public Mono<UserDetails> findByUsername(String username) {
 return userRepo.findByUsername(username)
 .map(user -> {
 return user.toUserDetails();
 });
 }
 };
}

Here, a Mono<UserDetails> is returned as required, but the UserRepository.findBy-
Username() method returns a Mono<User>. Because it’s a Mono, you can chain opera-
tions on it, such as a map() operation to map the Mono<User> to a Mono<UserDetails>.

 In this case, the map() operation is applied with a lambda that calls the helper
toUserDetails() method on the User object published by the Mono. This converts the
User to a UserDetails. As a consequence, the .map() operation returns a Mono<User-
Details>, which is precisely what the ReactiveUserDetailsService.findByUsername()
requires. If findByUsername() can’t find a matching user, then the Mono returned will
be empty, indicating no match and resulting in a failure to authenticate.

Summary
 Spring WebFlux offers a reactive web framework whose programming model

mirrors that of Spring MVC and even shares many of the same annotations.
 Spring also offers a functional programming model as an alternative to Spring

WebFlux’s annotation-based programming model.
 Reactive controllers can be tested with WebTestClient.
 On the client side, Spring offers WebClient, a reactive analog to Spring’s Rest-

Template.
 Although WebFlux has some significant implications for the underlying mecha-

nisms for securing a web application, Spring Security 5 supports reactive security
with a programming model that isn’t dramatically different from nonreactive
Spring MVC applications.

Persisting data reactively
If we’ve learned one thing from science fiction, it’s that if you want to improve
upon past experiences, all you need is a little time travel. It worked in Back to the
Future, several episodes of various Star Trek shows, Avengers: Endgame, and Ste-
phen King’s 11/22/63. (OK, well maybe that last one didn’t turn out better. But
you get the idea.)

 In this chapter, we’re going to rewind back to chapters 3 and 4, revisiting the
repositories we created for relational databases, MongoDB, and Cassandra. This
time, we’re going to improve on them by taking advantage of some of Spring Data’s
reactive repository support, allowing us to work with those repositories in a non-
blocking fashion.

 Let’s start by looking at Spring Data R2DBC, a reactive alternative to Spring
Data JDBC for persistence to relational databases.

This chapter covers
 Reactive relational persistence with R2DBC

 Defining reactive repositories for MongoDB and
Cassandra

 Testing reactive repositories
337

338 CHAPTER 13 Persisting data reactively
13.1 Working with R2DBC
Reactive Relational Database Connectivity, or R2DBC (https://r2dbc.io/) as it is com-
monly known, is a relatively new option for working with relational data using reactive
types. It is effectively a reactive alternative to JDBC, enabling nonblocking persistence
against conventional relational databases such as MySQL, PostgreSQL, H2, and Ora-
cle. Because it’s built on Reactive Streams, it is quite different from JDBC and is a sep-
arate specification, unrelated to Java SE.

 Spring Data R2DBC is a subproject of Spring Data that offers automatic repository
support for R2DBC, much the same as Spring Data JDBC, which we looked at in chap-
ter 3. Unlike Spring Data JDBC, however, Spring Data R2DBC doesn’t require strict
adherence to domain-driven design concepts. In fact, as you’ll soon see, attempting to
persist data through an aggregate root requires a bit more work with Spring Data
R2DBC than with Spring Data JDBC.

 To use Spring Data R2DBC, you’ll need to add a starter dependency to your proj-
ect’s build. For a Maven-built project, the dependency looks like this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-r2dbc</artifactId>
</dependency>

Or, if you’re using the Initializr, select the Spring Data R2DBC check box when creat-
ing your project.

 You’ll also need a relational database to persist data to, along with a corresponding
R2DBC driver. For our project, we’ll be using an in-memory H2 database. Therefore,
we need to add two dependencies: the H2 database library itself and the H2 R2DBC
driver. The Maven dependencies follow:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>io.r2dbc</groupId>
 <artifactId>r2dbc-h2</artifactId>
 <scope>runtime</scope>
</dependency>

If you’re using a different database, then you’ll need to add the corresponding
R2BDC driver dependency for the database of your choice.

 Now that the dependencies are in place, let’s see how Spring Data R2DBC works.
Let’s start by defining the domain entities.

https://r2dbc.io/

339Working with R2DBC
13.1.1 Defining domain entities for R2DBC

To get to know Spring Data R2DBC, we’ll recreate just the persistence layer of the
Taco Cloud application, focusing only on the components that are necessary for per-
sisting taco and order data. This includes creating domain entities for TacoOrder,
Taco, and Ingredient, along with corresponding repositories for each.

 The first domain entity class we’ll create is the Ingredient class. It will look some-
thing like the next code listing.

package tacos;

import org.springframework.data.annotation.Id;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.NonNull;
import lombok.RequiredArgsConstructor;

@Data
@NoArgsConstructor
@RequiredArgsConstructor
@EqualsAndHashCode(exclude = "id")
public class Ingredient {

 @Id
 private Long id;

 private @NonNull String slug;

 private @NonNull String name;
 private @NonNull Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, this isn’t much different from other incarnations of the Ingredient
class that we’ve created before. Note the following two noteworthy differences:

 Spring Data R2DBC requires that properties have setter methods, so rather
than define most properties as final, they have to be non-final. But to help
Lombok create a required arguments constructor, we annotate most of the
properties with @NonNull. This will cause Lombok and the @RequiredArgs-
Constructor annotation to include those properties in the constructor.

 When saving an object through a Spring Data R2DBC repository, if the
object’s ID property is non-null, it is treated as an update. In the case of
Ingredient, the id property was previously typed as String and specified at

Listing 13.1 The Ingredient entity class for R2DBC persistence

340 CHAPTER 13 Persisting data reactively
creation time. But doing that with Spring Data R2DBC results in an error. So,
here we shift that String ID to a new property named slug, which is just a
pseudo-ID for the Ingredient, and use a Long ID property with a value gen-
erated by the database.

The corresponding database table is defined in schema.sql like this:

create table Ingredient (
 id identity,
 slug varchar(4) not null,
 name varchar(25) not null,
 type varchar(10) not null
);

The Taco entity class is also quite similar to its Spring Data JDBC counterpart, as
shown in the next code.

package tacos;

import java.util.HashSet;
import java.util.Set;
import org.springframework.data.annotation.Id;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.NonNull;
import lombok.RequiredArgsConstructor;

@Data
@NoArgsConstructor
@RequiredArgsConstructor
public class Taco {

 @Id
 private Long id;

 private @NonNull String name;

 private Set<Long> ingredientIds = new HashSet<>();

 public void addIngredient(Ingredient ingredient) {
 ingredientIds.add(ingredient.getId());
 }

}

As with the Ingredient class, we have to allow for setter methods on the entity’s fields,
thus the use of @NonNull instead of final.

 But what’s especially interesting here is that instead of having a collection of
Ingredient objects, Taco has a Set<Long> referencing the IDs of Ingredient objects

Listing 13.2 The Taco entity class for R2DBC persistence

341Working with R2DBC
that are part of this taco. Set was chosen over List to guarantee uniqueness. But why
must we use a Set<Long> and not a Set<Ingredient> for the ingredient collection?

 Unlike other Spring Data projects, Spring Data R2DBC doesn’t currently sup-
port direct relationships between entities (at least not at this time). As a relatively
new project, Spring Data R2DBC is still working through some of the challenges of
handling relationships in a nonblocking way. This may change in future versions of
Spring Data R2DBC.

 Until then, we can’t have Taco referencing a collection of Ingredient and expect
persistence to just work. Instead, we have the following options when it comes to deal-
ing with relationships:

 Define entities with references to the IDs of related objects. In this case, the correspond-
ing column in the database table must be defined with an array type, if possible.
H2 and PostgreSQL are two databases that support array columns, but many
others do not. Also, even if the database supports array columns, it may not be
possible to define the entries as foreign keys to the referenced table, making it
impossible to enforce referential integrity.

 Define entities and their corresponding tables to match each other perfectly. For collec-
tions, this would mean that the referred object would have a column mapping
back to the referring table. For example, the table for Taco objects would need
to have a column that points back to the TacoOrder that the Taco is a part of.

 Serialize referenced entities to JSON and store the JSON in a large VARCHAR column. This
works especially well if there’s no need to query through to the referenced
objects. It does, however, have potential limits to how big the JSON-serialized
object(s) can be due to limits to the length of the corresponding VARCHAR col-
umn. Moreover, we won’t have any way to leverage the database schema to guar-
antee referential integrity, because the referenced objects will be stored as a
simple string value (which could contain anything).

Although none of these options are ideal, after weighing them, we’ll choose the first
option for the Taco object. The Taco class has a Set<Long> that references one or
more Ingredient IDs. This means that the corresponding table must have an array
column to store those IDs. For the H2 database, the Taco table is defined like this:

create table Taco (
 id identity,
 name varchar(50) not null,
 ingredient_ids array
);

The array type used on the ingredient_ids column is specific to H2. For Postgre-
SQL, that column might be defined as integer[]. Consult your chosen database doc-
umentation for details on how to define array columns. Note that not all database
implementations support array columns, so you may need to choose one of the other
options for modeling relationships.

342 CHAPTER 13 Persisting data reactively
 Finally, the TacoOrder class, as shown in the next listing, is defined using many of
the things we’ve already employed in defining our domain entities for persistence
with Spring Data R2DBC.

package tacos;

import java.util.LinkedHashSet;
import java.util.Set;
import org.springframework.data.annotation.Id;
import lombok.Data;

@Data
public class TacoOrder {

 @Id
 private Long id;

 private String deliveryName;
 private String deliveryStreet;
 private String deliveryCity;
 private String deliveryState;
 private String deliveryZip;
 private String ccNumber;
 private String ccExpiration;
 private String ccCVV;

 private Set<Long> tacoIds = new LinkedHashSet<>();

 private List<Taco> tacos = new ArrayList<>();
 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }

}

As you can see, aside from having a few more properties, the TacoOrder class follows
the same pattern as the Taco class. It references its child Taco objects via a Set<Long>.
A little later, though, we’ll see how to get complete Taco objects into a TacoOrder,
even though Spring Data R2DBC doesn’t directly support relationships in that way.

 The database schema for the Taco_Order table looks like this:

create table Taco_Order (
 id identity,
 delivery_name varchar(50) not null,
 delivery_street varchar(50) not null,
 delivery_city varchar(50) not null,
 delivery_state varchar(2) not null,
 delivery_zip varchar(10) not null,
 cc_number varchar(16) not null,
 cc_expiration varchar(5) not null,

Listing 13.3 The TacoOrder entity class for R2DBC persistence

343Working with R2DBC
 cc_cvv varchar(3) not null,
 taco_ids array
);

Just like the Taco table, which references ingredients with an array column, the Taco-
Order table references its child Tacos with a taco_ids column defined as an array col-
umn. Again, this schema is for an H2 database; consult your database documentation
for details on support and creation of array columns.

 Oftentimes, a production application already has its schema defined through
other means, and such scripts aren’t desirable except for tests. Therefore, this bean is
defined in a configuration that is loaded only when running automated tests and isn’t
available in the runtime application context. We’ll see an example of such a test for
testing R2DBC repositories after we have defined those services.

 What’s more, notice that this bean uses only the schema.sql file from the root of
the classpath (under src/main/resources in the project). If you’d like other SQL
scripts to be included as part of the database initialization, add more Resource-
DatabasePopulator objects in the call to populator.addPopulators().

 Now that we’ve defined our entities and their corresponding database schemas,
let’s create the repositories through which we’ll save and fetch taco data.

13.1.2 Defining reactive repositories

In chapters 3 and 4, we defined our repositories as interfaces that extend Spring
Data’s CrudRepository interface. But that base repository interface dealt with singu-
lar objects and Iterable collections. In contrast, we’d expect that a reactive reposi-
tory would deal in Mono and Flux objects.

 That’s why Spring Data offers ReactiveCrudRepository for defining reactive reposi-
tories. ReactiveCrudRepository operates very much like CrudRepository. To create a
repository, define an interface that extends ReactiveCrudRepository, such as this:

package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

import tacos.TacoOrder;

public interface OrderRepository
 extends ReactiveCrudRepository<TacoOrder, Long> {
}

On the surface, the only difference between this OrderRepository and the ones we
defined in chapters 3 and 4 is that it extends ReactiveCrudRepository instead of
CrudRepository. But what’s significantly different is that its methods return Mono and
Flux types instead of a single TacoOrder or Iterable<TacoOrder>. Two examples
include the findById() method, which returns a Mono<TacoOrder>, and findAll(),
which returns a Flux<TacoOrder>.

344 CHAPTER 13 Persisting data reactively
 To see how this reactive repository might work in action, suppose that you want to
fetch all TacoOrder objects and print their delivery names to standard output. In that
case, you might write some code like the next snippet.

@Autowired
OrderRepository orderRepo;

...

orderRepository.findAll()
 .doOnNext(order -> {
 System.out.println(
 "Deliver to: " + order.getDeliveryName());
 })
 .subscribe();

Here, the call to findAll() returns a Flux<TacoOrder> on which we have added a
doOnNext() to print the delivery name. Finally, the call to subscribe() kicks off the
flow of data through the Flux.

 In the Spring Data JDBC example from chapter 3, TacoOrder was the aggregate
root, with Taco being a child in that aggregate. Therefore, Taco objects were persisted
as part of a TacoOrder, and there was no need to define a repository dedicated to Taco
persistence. But Spring Data R2DBC doesn’t support proper aggregate roots this way,
so we’ll need a TacoRepository through which Taco objects are persisted. See the
next listing for such a repository.

package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import tacos.Taco;

public interface TacoRepository
 extends ReactiveCrudRepository<Taco, Long> {
}

As you can see, TacoRepository isn’t much different from OrderRepository. It
extends ReactiveCrudRepository to give us reactive types when working with Taco
persistence. There aren’t many surprises here.

 On the other hand, IngredientRepository is slightly more interesting, as
shown next.

package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

Listing 13.4 Calling a reactive repository method

Listing 13.5 Persisting Taco objects with a reactive repository

Listing 13.6 Persisting Ingredient objects with a reactive repository

345Working with R2DBC
import reactor.core.publisher.Mono;
import tacos.Ingredient;

public interface IngredientRepository
 extends ReactiveCrudRepository<Ingredient, Long> {

 Mono<Ingredient> findBySlug(String slug);

}

As with our other two reactive repositories, IngredientRepository extends Reactive-
CrudRepository. But because we might need a way to look up Ingredient objects
based on a slug value, IngredientRepository includes a findBySlug() method that
returns a Mono<Ingredient>.1

 Now let’s see how to write tests to verify that our repositories work.

13.1.3 Testing R2DBC repositories

Spring Data R2DBC includes support for writing integration tests for R2DBC reposito-
ries. Specifically, the @DataR2dbcTest annotation, when placed on a test class, causes
Spring to create an application context with the generated Spring Data R2DBC repos-
itories as beans that can be injected into the test class. Along with StepVerifier,
which we’ve used in previous chapters, this enables us to write automated tests against
all of the repositories we’ve created.

 For the sake of brevity, we’ll focus solely on a single test class: Ingredient-
RepositoryTest. This will test IngredientRepository, verifying that it can save
Ingredient objects, fetch a single Ingredient, and fetch all saved Ingredient objects.
The next code sample shows this test class.

package tacos.data;

import static org.assertj.core.api.Assertions.assertThat;

import java.util.ArrayList;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.r2dbc.DataR2dbcTest;

import reactor.core.publisher.Flux;
import reactor.test.StepVerifier;
import tacos.Ingredient;
import tacos.Ingredient.Type;

1 This method wasn’t necessary in chapter 3’s JDBC-based repository because we were able to have the id field
serve double duty as both an ID and a slug.

Listing 13.7 Testing a Spring Data R2DBC repository

346 CHAPTER 13 Persisting data reactively
@DataR2dbcTest
public class IngredientRepositoryTest {

 @Autowired
 IngredientRepository ingredientRepo;

 @BeforeEach
 public void setup() {
 Flux<Ingredient> deleteAndInsert = ingredientRepo.deleteAll()
 .thenMany(ingredientRepo.saveAll(
 Flux.just(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE)
)));

 StepVerifier.create(deleteAndInsert)
 .expectNextCount(3)
 .verifyComplete();
 }

 @Test
 public void shouldSaveAndFetchIngredients() {

 StepVerifier.create(ingredientRepo.findAll())
 .recordWith(ArrayList::new)
 .thenConsumeWhile(x -> true)
 .consumeRecordedWith(ingredients -> {
 assertThat(ingredients).hasSize(3);
 assertThat(ingredients).contains(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 assertThat(ingredients).contains(
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 assertThat(ingredients).contains(
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE));
 })
 .verifyComplete();

 StepVerifier.create(ingredientRepo.findBySlug("FLTO"))
 .assertNext(ingredient -> {
 ingredient.equals(new Ingredient("FLTO", "Flour Tortilla",

Type.WRAP));
 });
 }

}

The shouldSaveAndFetchIngredients() method starts by creating a Flux of test
Ingredient objects. From this Flux, it uses the flatMap() operation to save each
Ingredient via the save() method on the injected IngredientRepository. The call
to subscribe() opens the flow of data through the Flux, resulting in the Ingredient
objects being saved.

347Working with R2DBC
 Next up, a StepVerifier is created from the Mono<Ingredient> returned by the
repository’s findBySlug() method. The Mono<Ingredient> should have a single
Ingredient in it, which is what the assertNext() method verifies, matching it up with
the values expected for an Ingredient whose slug is "FLTO". Then, it verifies that the
Mono is complete.

 Finally, another StepVerifier is created from the Flux<Ingredient> returned by the
repository’s findAll() method. One at a time, it asserts that each Ingredient that flows
from that Flux matches up with the three Ingredient objects originally saved at the start
of the test method. And, as with the other StepVerifier, a call to verifyComplete() ver-
ifies that the Mono is complete and has no more Ingredient objects coming through.

 Although we focused only on testing the IngredientRepository, the same tech-
niques can be used to test any Spring Data R2BDC–generated repository.

 So far, so good. We now have defined our domain types and their respective reposito-
ries. And we’ve written a test to verify that they work. We can use them as is if we like. But
these repositories make persistence of a TacoOrder inconvenient in that we must first
create and persist Taco objects that are part of that order and then persist the Taco-
Order object that references the child Taco objects. And when reading the TacoOrder,
we’ll receive only a collection of Taco IDs and not fully defined Taco objects.

 It would be nice if we could persist TacoOrder as an aggregate root and have its
child Taco objects be persisted along with it. Likewise, it would be great if we could
fetch a TacoOrder and have it fully defined with complete Taco objects and not just
the IDs. Let’s define a service-level class that sits in front of OrderRepository and
TacoRepository to mimic the persistence behavior of chapter 3’s OrderRepository.

13.1.4 Defining an OrderRepository aggregate root service

The first step toward persisting TacoOrder and Taco objects together such that Taco-
Order is the aggregate root is to add a Taco collection property to the TacoOrder class.
This is shown next.

@Data
public class TacoOrder {

 ...

 @Transient
 private transient List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 if (taco.getId() != null) {
 this.tacoIds.add(taco.getId());
 }
 }

}

Listing 13.8 Adding a Taco collection to TacoOrder

348 CHAPTER 13 Persisting data reactively
Aside from adding a new List<Taco> property named tacos to the TacoOrder class,
the addTaco() method now adds the given Taco to that list (as well as adding its id to
the tacoIds set as before).

 Notice, however, that the tacos property is annotated with @Transient (as well as
marked with Java’s transient keyword). This indicates that Spring Data R2DBC
shouldn’t attempt to persist this property. Without the @Transient annotation, Spring
Data R2DBC would try to persist it and result in an error, due to it not supporting such
relationships.

 When a TacoOrder is saved, only the tacoIds property will be written to the data-
base, and the tacos property will be ignored. Even so, at least now TacoOrder has a
place to hold Taco objects. That will come in handy both for saving Taco objects when
a TacoOrder is saved and also to read in Taco objects when a TacoOrder is fetched.

 Now we can create a service bean that saves and reads TacoOrder objects along
with their respective Taco objects. Let’s start with saving a TacoOrder. The TacoOrder-
AggregateService class defined in the next code listing has a save() method that
does precisely that.

package tacos.web.api;

import java.util.ArrayList;
import java.util.List;

import org.springframework.stereotype.Service;

import lombok.RequiredArgsConstructor;
import reactor.core.publisher.Mono;
import tacos.Taco;
import tacos.TacoOrder;
import tacos.data.OrderRepository;
import tacos.data.TacoRepository;

@Service
@RequiredArgsConstructor
public class TacoOrderAggregateService {

 private final TacoRepository tacoRepo;
 private final OrderRepository orderRepo;

 public Mono<TacoOrder> save(TacoOrder tacoOrder) {
 return Mono.just(tacoOrder)
 .flatMap(order -> {
 List<Taco> tacos = order.getTacos();
 order.setTacos(new ArrayList<>());
 return tacoRepo.saveAll(tacos)
 .map(taco -> {
 order.addTaco(taco);
 return order;
 }).last();

Listing 13.9 Saving TacoOrders and Tacos as an aggregate

349Working with R2DBC
 })
 .flatMap(orderRepo::save);
 }

}

Although there aren’t many lines in listing 13.9, there’s a lot going on in the save()
method that requires some explanation. Firstly, the TacoOrder that is received as a
parameter is wrapped in a Mono using the Mono.just() method. This allows us to work
with it as a reactive type throughout the rest of the save() method.

 The next thing we do is apply a flatMap() to the Mono<TacoOrder> we just created.
Both map() and flatMap() are options for doing transformations on a data object
passing through a Mono or Flux, but because the operations we perform in the course
of doing the transformation will result in a Mono<TacoOrder>, the flatMap() opera-
tion ensures that we continue working with a Mono<TacoOrder> after the mapping and
not a Mono<Mono<TacoOrder>>, as would be the case if we used map() instead.

 The purpose of the mapping is to ensure that the TacoOrder ends up with the IDs
of the child Taco objects and saves those Taco objects along the way. Each Taco
object’s ID is probably null initially for a new TacoOrder, and we won’t know the IDs
until after the Taco objects have been saved.

 After fetching the List<Taco> from the TacoOrder, which we’ll use when saving
Taco objects, we reset the tacos property to an empty list. We’ll be rebuilding that list
with new Taco objects that have been assigned IDs after having been saved.

 A call to the saveAll() method on the injected TacoRepository saves all of our
Taco objects. The saveAll() method returns a Flux<Taco> that we then cycle
through by way of the map() method. In this case, the transformation operation is sec-
ondary to the fact that each Taco object is being added back to the TacoOrder. But
to ensure that it’s a TacoOrder and not a Taco that ends up on the resulting Flux,
the mapping operation returns the TacoOrder instead of the Taco. A call to last()
ensures that we won’t have duplicate TacoOrder objects (one for each Taco) as a result
of the mapping operation.

 At this point, all Taco objects should have been saved and then pushed back into
the parent TacoOrder object, along with their newly assigned IDs. All that’s left is to
save the TacoOrder, which is what the final flatMap() call does. Again, we choose
flatMap() here to ensure that the Mono<TacoOrder> returned from the call to Order-
Repository.save() doesn’t get wrapped in another Mono. We want our save()
method to return a Mono<TacoOrder>, not a Mono<Mono<TacoOrder>>.

 Now let’s have a look at a method that will read a TacoOrder by its ID, reconstitut-
ing all of the child Taco objects. The following code sample shows a new findById()
method for that purpose.

public Mono<TacoOrder> findById(Long id) {
 return orderRepo

Listing 13.10 Reading TacoOrders and Tacos as an aggregate

350 CHAPTER 13 Persisting data reactively
 .findById(id)
 .flatMap(order -> {
 return tacoRepo.findAllById(order.getTacoIds())
 .map(taco -> {
 order.addTaco(taco);
 return order;
 }).last();
 });
}

The new findById() method is a bit shorter than the save() method. But we still
have a lot to unpack in this small method.

 The first thing to do is fetch the TacoOrder by calling the findById() method on
the OrderRepository. This returns a Mono<TacoOrder> that is then flat-mapped to
transform it from a TacoOrder that has only Taco IDs into a TacoOrder that includes
complete Taco objects.

 The lambda given to the flatMap() method makes a call to the TacoRepository
.findAllById() method to fetch all Taco objects referenced in the tacoIds property
at once. This results in a Flux<Taco> that is cycled over via map(), adding each Taco to
the parent TacoOrder, much like we did in the save() method after saving all Taco
objects with saveAll().

 Again, the map() operation is used more as a means of iterating over the Taco
objects rather than as a transformation. But the lambda given to map() returns the
parent TacoOrder each time so that we end up with a Flux<TacoOrder> instead of a
Flux<Taco>. The call to last() takes the last entry in that Flux and returns a
Mono<TacoOrder>, which is what we return from the findById() method.

 The code in the save() and findById() methods may be a little confusing if
you’re not already in a reactive mind-set. Reactive programming requires a different
mindset and can be confusing at first, but you’ll come to recognize it as quite elegant
as your reactive programming skills get stronger.

 As with any code—but especially code that may appear confusing like that in Taco-
OrderAggregateService—it’s a good idea to write tests to ensure that it works as
expected. The test will also serve as an example of how the TacoOrderAggregateService
can be used. The following code listing shows a test for TacoOrderAggregateService.

package tacos.web.api;

import static org.assertj.core.api.Assertions.assertThat;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.r2dbc.DataR2dbcTest;
import org.springframework.test.annotation.DirtiesContext;

Listing 13.11 Testing the TacoOrderAggregateService

351Working with R2DBC
import reactor.test.StepVerifier;
import tacos.Taco;
import tacos.TacoOrder;
import tacos.data.OrderRepository;
import tacos.data.TacoRepository;

@DataR2dbcTest
@DirtiesContext
public class TacoOrderAggregateServiceTests {

 @Autowired
 TacoRepository tacoRepo;

 @Autowired
 OrderRepository orderRepo;

 TacoOrderAggregateService service;

 @BeforeEach
 public void setup() {
 this.service = new TacoOrderAggregateService(tacoRepo, orderRepo);
 }

 @Test
 public void shouldSaveAndFetchOrders() {
 TacoOrder newOrder = new TacoOrder();
 newOrder.setDeliveryName("Test Customer");
 newOrder.setDeliveryStreet("1234 North Street");
 newOrder.setDeliveryCity("Notrees");
 newOrder.setDeliveryState("TX");
 newOrder.setDeliveryZip("79759");
 newOrder.setCcNumber("4111111111111111");
 newOrder.setCcExpiration("12/24");
 newOrder.setCcCVV("123");

 newOrder.addTaco(new Taco("Test Taco One"));
 newOrder.addTaco(new Taco("Test Taco Two"));

 StepVerifier.create(service.save(newOrder))
 .assertNext(this::assertOrder)
 .verifyComplete();

 StepVerifier.create(service.findById(1L))
 .assertNext(this::assertOrder)
 .verifyComplete();
 }

 private void assertOrder(TacoOrder savedOrder) {
 assertThat(savedOrder.getId()).isEqualTo(1L);
 assertThat(savedOrder.getDeliveryName()).isEqualTo("Test Customer");
 assertThat(savedOrder.getDeliveryName()).isEqualTo("Test Customer");
 assertThat(savedOrder.getDeliveryStreet()).isEqualTo("1234 North Street");
 assertThat(savedOrder.getDeliveryCity()).isEqualTo("Notrees");
 assertThat(savedOrder.getDeliveryState()).isEqualTo("TX");
 assertThat(savedOrder.getDeliveryZip()).isEqualTo("79759");

352 CHAPTER 13 Persisting data reactively
 assertThat(savedOrder.getCcNumber()).isEqualTo("4111111111111111");
 assertThat(savedOrder.getCcExpiration()).isEqualTo("12/24");
 assertThat(savedOrder.getCcCVV()).isEqualTo("123");
 assertThat(savedOrder.getTacoIds()).hasSize(2);
 assertThat(savedOrder.getTacos().get(0).getId()).isEqualTo(1L);
 assertThat(savedOrder.getTacos().get(0).getName())
 .isEqualTo("Test Taco One");
 assertThat(savedOrder.getTacos().get(1).getId()).isEqualTo(2L);
 assertThat(savedOrder.getTacos().get(1).getName())
 .isEqualTo("Test Taco Two");
 }

}

Listing 13.11 contains a lot of lines, but much of it is asserting the contents of a TacoOr-
der in the assertOrder() method. We’ll focus on the other parts as we review this test.

 The test class is annotated with @DataR2dbcTest to have Spring create an application
context with all of our repositories as beans. @DataR2dbcTest seeks out a configuration
class annotated with @SpringBootConfiguration to define the Spring application con-
text. In a single-module project, the bootstrap class annotated with @SpringBoot-
Application (which itself is annotated with @SpringBootConfiguration) serves this
purpose. But in our multimodule project, this test class isn’t in the same project as the
bootstrap class, so we’ll need a simple configuration class like this one:

package tacos;

import org.springframework.boot.SpringBootConfiguration;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;

@SpringBootConfiguration
@EnableAutoConfiguration
public class TestConfig {

}

Not only does this satisfy the need for a @SpringBootConfiguration-annotated class,
but it also enables autoconfiguration, ensuring that (among other things) the reposi-
tory implementations will be created.

 On its own, TacoOrderAggregateServiceTests should pass fine. But in an IDE
that may share JVMs and Spring application contexts between test runs, running this
test alongside other persistence tests may result in conflicting data being written to
the in-memory H2 database. The @DirtiesContext annotation is used here to ensure
that the Spring application context is reset between test runs, resulting in a new and
empty H2 database on each run.

 The setup() method creates an instance of TacoOrderAggregateService using
the TacoRepository and OrderRepository objects injected into the test class. The
TacoOrderAggregateService is assigned to an instance variable so that the test
method(s) can use it.

353Persisting document data reactively with MongoDB
 Now we’re finally ready to test our aggregation service. The first several lines of
shouldSaveAndFetchOrders() builds up a TacoOrder object and populates it with a
couple of test Taco objects. Then the TacoOrder is saved via the save() method from
TacoOrderAggregateService, which returns a Mono<TacoOrder> representing the
saved order. Using StepVerifier, we assert that the TacoOrder in the returned Mono
matches our expectations, including that it contains the child Taco objects.

 Next, we call the service’s findById() method, which also returns a Mono<Taco-
Order>. As with the call to save(), a StepVerifier is used to step through each
TacoOrder in the returned Mono (there should be only one) and asserts that it meets
our expectations.

 In both StepVerifier situations, a call to verifyComplete() ensures that there
are no more objects in the Mono and that the Mono is complete.

 It’s worth noting that although we could apply a similar aggregation operation to
ensure that Taco objects always contain fully defined Ingredient objects, we choose not
to, given that Ingredient is its own aggregate root, likely being referenced by multiple
Taco objects. Therefore, every Taco will carry only a Set<Long> to reference Ingredient
IDs, which can then be looked up separately via IngredientRepository.

 Although it may require a bit more work to aggregate entities, Spring Data R2DBC
provides a way of working with relational data in a reactive way. But it’s not the only
reactive persistence option provided by Spring. Let’s have a look at how to work with
MongoDB using reactive Spring Data repositories.

13.2 Persisting document data reactively with MongoDB
In chapter 4, we used Spring Data MongoDB to define document-based persistence
against a MongoDB document database. In this section, we’re going to revisit MongoDB
persistence using Spring Data’s reactive support for MongoDB.

 To get started, you’ll need to create a project with the Spring Data Reactive
MongoDB starter. That is, in fact, the name of the check box to select when creating
the project with the Initalizr. Or you can add it manually to your Maven build with the
following dependency:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
</dependency>

In chapter 4, we also leaned on the Flapdoodle embedded MongoDB database for
testing. Unfortunately, Flapdoodle doesn’t behave quite as well when fronted with
reactive repositories. When it comes to running the tests, you’ll need to have an actual
Mongo database running and listening on port 27017.

 Now we’re ready to start writing code for reactive MongoDB persistence. We’ll start
with the document types that make up our domain.

354 CHAPTER 13 Persisting data reactively
13.2.1 Defining domain document types

As before, we’ll need to create the classes that define our application’s domain. As we
do, we’ll need to annotate them with Spring Data MongoDB’s @Document annotation,
just as we did in chapter 4, to indicate that they are documents to be stored in Mon-
goDB. Let’s start with the Ingredient class, shown here.

package tacos;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Document
public class Ingredient {

 @Id
 private String id;
 private String name;
 private Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

A keen eye will notice that this Ingredient class is identical to the one we created in
chapter 4. In fact, MongoDB @Document classes are the same whether being persisted
through a reactive or nonreactive repository. That means that the Taco and Taco-
Order classes are going to be the same as the ones we created in chapter 4. But for
the sake of completeness—and so that you won’t need to turn back to chapter 4—
we’ll repeat them here.

 A similarly annotated Taco class is shown next.

package tacos;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;

Listing 13.12 An Ingredient class annotated for Mongo persistence

Listing 13.13 A Taco class annotated for Mongo persistence

355Persisting document data reactively with MongoDB
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import org.springframework.data.rest.core.annotation.RestResource;

import lombok.Data;

@Data
@RestResource(rel = "tacos", path = "tacos")
@Document
public class Taco {

 @Id
 private String id;

 @NotNull
 @Size(min = 5, message = "Name must be at least 5 characters long")
 private String name;

 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients = new ArrayList<>();

 public void addIngredient(Ingredient ingredient) {
 this.ingredients.add(ingredient);
 }

}

Notice that, unlike Ingredient, the Taco class isn’t annotated with @Document. That’s
because it isn’t saved as a document in itself and is instead saved as part of the Taco-
Order aggregate root. On the other hand, because TacoOrder is an aggregate root, it
is annotated with @Document as shown in the next code.

package tacos;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

import lombok.Data;

@Data
@Document

Listing 13.14 A TacoOrder class annotated for Mongo persistence

356 CHAPTER 13 Persisting data reactively
public class TacoOrder implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 private String id;
 private Date placedAt = new Date();

 private User user;

 private String deliveryName;

 private String deliveryStreet;

 private String deliveryCity;

 private String deliveryState;

 private String deliveryZip;

 private String ccNumber;

 private String ccExpiration;

 private String ccCVV;

 private List<Taco> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.tacos.add(taco);
 }

}

Again, the domain document classes are no different for reactive MongoDB repositories
than they would be for nonreactive repositories. As you’ll see next, reactive MongoDB
repositories themselves differ very slightly from their nonreactive counterparts.

13.2.2 Defining reactive MongoDB repositories

Now we’ll need to define two repositories, one for the TacoOrder aggregate root and
another for Ingredient. We won’t need a repository for Taco because it is a child of
the TacoOrder root.

 The IngredientRepository interface, shown here, should be familiar to you by now:

package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import org.springframework.web.bind.annotation.CrossOrigin;

import tacos.Ingredient;
@CrossOrigin(origins="http:/ /localhost:8080")

357Persisting document data reactively with MongoDB
public interface IngredientRepository
 extends ReactiveCrudRepository<Ingredient, String> {

}

This IngredientRepository interface is only slightly different from the one we
defined in chapter 4 in that it extends ReactiveCrudRepository instead of Crud-
Repository. And it differs from the one we created for Spring Data R2DBC per-
sistence only in that it doesn’t include the findBySlug() method.

 Likewise, OrderRepository is all but identical to the same MongoDB repository we
created in chapter 4, shown next:

package tacos.data;

import org.springframework.data.domain.Pageable;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;

import reactor.core.publisher.Flux;
import tacos.TacoOrder;
import tacos.User;

public interface OrderRepository
 extends ReactiveCrudRepository<TacoOrder, String> {

 Flux<TacoOrder> findByUserOrderByPlacedAtDesc(
 User user, Pageable pageable);

}

Ultimately, the only difference between reactive and nonreactive MongoDB reposito-
ries is whether they extend ReactiveCrudRepository or CrudRepository. In choosing
to extend ReactiveCrudRepository, however, clients of these repositories must be
prepared to deal with reactive types like Flux and Mono. That becomes apparent as we
write tests for the reactive repositories, which is what we’ll do next.

13.2.3 Testing reactive MongoDB repositories

The key to writing tests for MongoDB repositories is to annotate the test class with
@DataMongoTest. This annotation performs a function similar to the @DataR2dbcTest
annotation that we used earlier in this chapter. It ensures that a Spring application
context is created with the generated repositories available as beans to be injected
into the test. From there, the test can use those injected repositories to set up test data
and perform other operations against the database.

 For example, consider IngredientRepositoryTest in the next listing, which tests
IngredientRepository, asserting that Ingredient objects can be written to and read
from the database.

358 CHAPTER 13 Persisting data reactively
package tacos.data;

import static org.assertj.core.api.Assertions.assertThat;
import java.util.ArrayList;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;
import reactor.core.publisher.Flux;
import reactor.test.StepVerifier;
import tacos.Ingredient;
import tacos.Ingredient.Type;

@DataMongoTest
public class IngredientRepositoryTest {

 @Autowired
 IngredientRepository ingredientRepo;

 @BeforeEach
 public void setup() {
 Flux<Ingredient> deleteAndInsert = ingredientRepo.deleteAll()
 .thenMany(ingredientRepo.saveAll(
 Flux.just(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE)
)));

 StepVerifier.create(deleteAndInsert)
 .expectNextCount(3)
 .verifyComplete();
 }

 @Test
 public void shouldSaveAndFetchIngredients() {

 StepVerifier.create(ingredientRepo.findAll())
 .recordWith(ArrayList::new)
 .thenConsumeWhile(x -> true)
 .consumeRecordedWith(ingredients -> {
 assertThat(ingredients).hasSize(3);
 assertThat(ingredients).contains(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 assertThat(ingredients).contains(
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 assertThat(ingredients).contains(
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE));
 })
 .verifyComplete();

Listing 13.15 Testing a reactive Mongo repository

359Persisting document data reactively with MongoDB
 StepVerifier.create(ingredientRepo.findById("FLTO"))
 .assertNext(ingredient -> {
 ingredient.equals(new Ingredient("FLTO", "Flour Tortilla",

Type.WRAP));
 });
 }

}

This test is similar to, but still slightly different from, the R2DBC-based repository test we
wrote earlier in this chapter. It starts by writing three Ingredient objects to the data-
base. Then, it employs two StepVerifier instances to verify that Ingredient objects can
be read through the repository, first as a collection of all Ingredient objects and then
fetching a single Ingredient by its ID.

 Also, just as with the R2DBC-based test from earlier, the @DataMongoTest annota-
tion will seek out a @SpringBootConfiguration-annotated class for creating the appli-
cation context. A test just like the one created earlier will work here, too.

 What’s unique here is that the first StepVerifier collects all of the Ingredient
objects into an ArrayList and then asserts that the ArrayList contains each Ingre-
dient. The findAll() method doesn’t guarantee a consistent ordering of the result-
ing documents, which makes the use of assertNext() or expectNext() prone to fail.
By collecting all resulting Ingredient objects into a list, we can assert that the list has
all three objects, regardless of their order.

 A test for OrderRepository looks quite similar, as shown here.

package tacos.data;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;

import reactor.test.StepVerifier;
import tacos.Ingredient;
import tacos.Taco;
import tacos.TacoOrder;
import tacos.Ingredient.Type;

@DataMongoTest
public class OrderRepositoryTest {

 @Autowired
 OrderRepository orderRepo;

 @BeforeEach
 public void setup() {
 orderRepo.deleteAll().subscribe();
 }

Listing 13.16 Testing the Mongo OrderRepository

360 CHAPTER 13 Persisting data reactively
 @Test
 public void shouldSaveAndFetchOrders() {
 TacoOrder order = createOrder();

 StepVerifier
 .create(orderRepo.save(order))
 .expectNext(order)
 .verifyComplete();

 StepVerifier
 .create(orderRepo.findById(order.getId()))
 .expectNext(order)
 .verifyComplete();

 StepVerifier
 .create(orderRepo.findAll())
 .expectNext(order)
 .verifyComplete();
 }

 private TacoOrder createOrder() {
 TacoOrder order = new TacoOrder();
 ...
 return order;
 }

}

The first thing that the shouldSaveAndFetchOrders() method does is construct an
order, complete with customer and payment information and a couple of tacos. (For
brevity’s sake, I’ve left out the details of the createOrder() method.) It then uses a
StepVerifier to save the TacoOrder object and assert that the save() method returns
the saved TacoOrder. It then attempts to fetch the order by its ID and asserts that it
receives the full TacoOrder. Finally, it fetches all TacoOrder objects—there should be
only one—and asserts it is the expected TacoOrder.

 As mentioned earlier, you’ll need a MongoDB server available and listening on
port 27017 to run this test. The Flapdoodle embedded MongoDB doesn’t work well
with reactive repositories. If you have Docker installed on your machine, you can eas-
ily start a MongoDB server exposed on port 27017 like this:

$ docker run -p27017:27017 mongo

Other ways to get a MongoDB setup are possible. Consult the documentation at
https://www.mongodb.com/ for more details.

 Now that we’ve seen how to create reactive repositories for R2BDC and MongoDB,
let’s have a look at one more Spring Data option for reactive persistence: Cassandra.

https://www.mongodb.com/

361Reactively persisting data in Cassandra
13.3 Reactively persisting data in Cassandra
To get started with reactive persistence against a Cassandra database, you’ll need to
add the following starter dependency to your project build. This dependency is in lieu
of any Mongo or R2DBC dependencies we’ve used earlier.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-cassandra-reactive</artifactId>
</dependency>

Then, you’ll need to declare some details about the Cassandra keyspace and how the
schema should be managed. In your application.yml file, add the following lines:

spring:
 data:
 rest:
 base-path: /data-api
 cassandra:
 keyspace-name: tacocloud
 schema-action: recreate
 local-datacenter: datacenter1

This is the same YAML configuration we used in chapter 4 when working with nonre-
active Cassandra repositories. The key thing to take note of is the keyspace-name. It is
important that you create a keyspace with that name in your Cassandra cluster.

 You’ll also need to have a Cassandra cluster running on your local machine listen-
ing on port 9042. The easiest way to do that is with Docker, as follows:

$ docker network create cassandra-net
$ docker run --name my-cassandra --network cassandra-net \
 -p 9042:9042 -d cassandra:latest

If your Cassandra cluster is on another machine or port, you’ll need to specify the
contact points and port in application.yml, as shown in chapter 4. To create the keys-
pace, run the CQL shell and use the create keyspace command like this:

$ docker run -it --network cassandra-net --rm cassandra cqlsh my-cassandra
cqlsh> create keyspace tacocloud
WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 1};

Now that you have a Cassandra cluster, a new tacocloud keyspace, and the Spring
Data Cassandra Reactive starter in your project, you’re ready to start defining the
domain classes.

362 CHAPTER 13 Persisting data reactively
13.3.1 Defining domain classes for Cassandra persistence

As was the case when persisting with Mongo, the choice of reactive versus nonreac-
tive Cassandra persistence makes absolutely no difference in how you define your
domain classes. The domain classes for Ingredient, Taco, and TacoOrder we’ll use
are identical to the ones we created in chapter 4. A Cassandra-annotated Ingredient
class is shown here.

package tacos;

import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@AllArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Table("ingredients")
public class Ingredient {

 @PrimaryKey
 private String id;
 private String name;
 private Type type;

 public enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As for the Taco class, it is defined with similar Cassandra persistence annotations in
the next code listing.

package tacos;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import org.springframework.data.cassandra.core.cql.Ordering;
import org.springframework.data.cassandra.core.cql.PrimaryKeyType;

Listing 13.17 Annotating Ingredient for Cassandra persistence

Listing 13.18 Annotating Taco for Cassandra persistence

363Reactively persisting data in Cassandra
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKeyColumn;
import org.springframework.data.cassandra.core.mapping.Table;
import org.springframework.data.rest.core.annotation.RestResource;

import com.datastax.oss.driver.api.core.uuid.Uuids;

import lombok.Data;

@Data
@RestResource(rel = "tacos", path = "tacos")
@Table("tacos")
public class Taco {

 @PrimaryKeyColumn(type=PrimaryKeyType.PARTITIONED)
 private UUID id = Uuids.timeBased();

 @NotNull
 @Size(min = 5, message = "Name must be at least 5 characters long")
 private String name;

 @PrimaryKeyColumn(type=PrimaryKeyType.CLUSTERED,
 ordering=Ordering.DESCENDING)
 private Date createdAt = new Date();

 @Size(min=1, message="You must choose at least 1 ingredient")
 @Column("ingredients")
 private List<IngredientUDT> ingredients = new ArrayList<>();

 public void addIngredient(Ingredient ingredient) {
 this.ingredients.add(new IngredientUDT(ingredient.getName(),

ingredient.getType()));
 }

}

Because Taco refers to Ingredient objects via a user-defined type, you’ll also need the
IngredientUDT class, as shown next.

package tacos;

import org.springframework.data.cassandra.core.mapping.UserDefinedType;

import lombok.AccessLevel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@AllArgsConstructor
@NoArgsConstructor(access = AccessLevel.PRIVATE, force = true)
@UserDefinedType("ingredient")

Listing 13.19 An Ingredient user-defined type for Cassandra persistence

364 CHAPTER 13 Persisting data reactively
public class IngredientUDT {
 private String name;
 private Ingredient.Type type;
}

The final of our three domain classes, TacoOrder is annotated for Cassandra per-
sistence as shown in the following listing.

package tacos;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;

import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;

import com.datastax.oss.driver.api.core.uuid.Uuids;

import lombok.Data;

@Data
@Table("tacoorders")
public class TacoOrder implements Serializable {
 private static final long serialVersionUID = 1L;

 @PrimaryKey
 private UUID id = Uuids.timeBased();
 private Date placedAt = new Date();

 @Column("user")
 private UserUDT user;

 private String deliveryName;

 private String deliveryStreet;

 private String deliveryCity;

 private String deliveryState;

 private String deliveryZip;

 private String ccNumber;

 private String ccExpiration;

 private String ccCVV;

Listing 13.20 Annotating TacoOrder for Cassandra persistence

365Reactively persisting data in Cassandra
 @Column("tacos")
 private List<TacoUDT> tacos = new ArrayList<>();

 public void addTaco(Taco taco) {
 this.addTaco(new TacoUDT(taco.getName(), taco.getIngredients()));
 }

 public void addTaco(TacoUDT tacoUDT) {
 this.tacos.add(tacoUDT);
 }

}

And, just like how Taco refers to Ingredient via a user-defined type, TacoOrder refers
to Taco via the TacoUDT class, which is shown next.

package tacos;

import java.util.List;

import org.springframework.data.cassandra.core.mapping.UserDefinedType;

import lombok.Data;

@Data
@UserDefinedType("taco")
public class TacoUDT {

 private final String name;
 private final List<IngredientUDT> ingredients;

}

It bears repeating that these are identical to their nonreactive counterparts. I’ve only
repeated them here so that you don’t have to flip back 11 chapters to remember what
they look like.

 Now let’s define the repositories that persist these objects.

13.3.2 Creating reactive Cassandra repositories

By now you may already be expecting the reactive Cassandra repositories to look a lot
like the equivalent nonreactive repositories. If so, then great! You’re catching on that
Spring Data, wherever possible, attempts to maintain a similar programming model
regardless of whether or not repositories are reactive.

 You may have already guessed that the only key difference that makes the reposito-
ries reactive is that the interfaces extend ReactiveCrudRepository, as shown here in
the IngredientRepository interface:

Listing 13.21 An Taco user-defined type for Cassandra persistence

366 CHAPTER 13 Persisting data reactively
package tacos.data;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends ReactiveCrudRepository<Ingredient, String> {

}

Naturally, the same holds true for OrderRepository, as shown next:

package tacos.data;

import java.util.UUID;

import org.springframework.data.domain.Pageable;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;

import reactor.core.publisher.Flux;
import tacos.TacoOrder;
import tacos.User;

public interface OrderRepository
 extends ReactiveCrudRepository<TacoOrder, UUID> {

 Flux<TacoOrder> findByUserOrderByPlacedAtDesc(
 User user, Pageable pageable);

}

In fact, not only are these repositories reminiscent of their nonreactive counterparts,
they also do not differ greatly from the MongoDB repositories we wrote earlier in this
chapter. Aside from Cassandra using UUID as an ID type instead of String for Taco-
Order, they are virtually identical. This once again demonstrates the consistency
employed (where possible) across Spring Data projects.

 Let’s wrap up our look at writing reactive Cassandra repositories by writing a cou-
ple of tests to verify that they work.

13.3.3 Testing reactive Cassandra repositories

At this point, it may not come as a surprise that testing reactive Cassandra repositories
is quite similar to how you test reactive MongoDB repositories. For example, take a
look at IngredientRepositoryTest in the next listing, and see if you can spot how it
differs from listing 13.15.

package tacos.data;

import static org.assertj.core.api.Assertions.assertThat;

Listing 13.22 Testing the Cassandra IngredientRepository

367Reactively persisting data in Cassandra
import java.util.ArrayList;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.cassandra

.DataCassandraTest;

import reactor.core.publisher.Flux;
import reactor.test.StepVerifier;
import tacos.Ingredient;
import tacos.Ingredient.Type;

@DataCassandraTest
public class IngredientRepositoryTest {

 @Autowired
 IngredientRepository ingredientRepo;

 @BeforeEach
 public void setup() {
 Flux<Ingredient> deleteAndInsert = ingredientRepo.deleteAll()
 .thenMany(ingredientRepo.saveAll(
 Flux.just(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE)
)));

 StepVerifier.create(deleteAndInsert)
 .expectNextCount(3)
 .verifyComplete();
 }

 @Test
 public void shouldSaveAndFetchIngredients() {

 StepVerifier.create(ingredientRepo.findAll())
 .recordWith(ArrayList::new)
 .thenConsumeWhile(x -> true)
 .consumeRecordedWith(ingredients -> {
 assertThat(ingredients).hasSize(3);
 assertThat(ingredients).contains(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP));
 assertThat(ingredients).contains(
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN));
 assertThat(ingredients).contains(
 new Ingredient("CHED", "Cheddar Cheese", Type.CHEESE));
 })
 .verifyComplete();

 StepVerifier.create(ingredientRepo.findById("FLTO"))
 .assertNext(ingredient -> {
 ingredient.equals(new Ingredient("FLTO", "Flour Tortilla",

Type.WRAP));

368 CHAPTER 13 Persisting data reactively
 });
 }

}

Did you see it? Where the MongoDB version was annotated with @DataMongoTest, this
new Cassandra version is annotated with @DataCassandraTest. That’s it! Otherwise,
the tests are identical.

 The same is true for OrderRepositoryTest. Replace @DataMongoTest with @Data-
CassandraTest, and everything else is the same, as shown here:

@DataCassandraTest
public class OrderRepositoryTest {
 ...
}

Once again, consistency between various Spring Data projects extends even into how
the tests are written. This makes it easy to switch between projects that persist to differ-
ent kinds of databases without having to think much differently about how they are
developed.

Summary
 Spring Data supports reactive persistence for a variety of database types, includ-

ing relational databases (with R2DBC), MongoDB, and Cassandra.
 Spring Data R2DBC offers a reactive option for relational persistence but

doesn’t yet directly support relationships in domain classes.
 For lack of direct relationship support, Spring Data R2DBC repositories require

a different approach to domain and database table design.
 Spring Data MongoDB and Spring Data Cassandra offer a near-identical pro-

gramming model for writing reactive repositories for MongoDB and Cassandra
databases.

 Using Spring Data test annotations along with StepVerifier, you can test auto-
matically created reactive repositories from the Spring application context.

Working with RSocket
There was a time, before telephones and modern electronics, when the best way to
communicate with friends and family that live far away involved writing a letter and
dropping it in the mail. It wasn’t a quick form of communication, taking several
days or even weeks before you’d receive a response, but it was effective and truly
the only option available.

 Thanks to Alexander Graham Bell, the telephone offered a new way to talk with
distant friends and family, giving near-real-time, synchronous communication The
telephone has evolved quite a bit since Mr. Bell’s first invention, but it’s still a popu-
lar means of keeping in touch, making letter-writing nearly a lost art.

 When it comes to communication between applications, the request-response
model offered by HTTP and REST services is quite common, but it has limitations.
Much like letter-writing, request-response involves sending a message and then
waiting for a response. It doesn’t easily allow for asynchronous communication in

This chapter covers
 Reactive network communication with RSocket

 Working with each of RSocket’s four
communication models

 Transporting RSocket over WebSocket
369

370 CHAPTER 14 Working with RSocket
which a server might respond with a stream of responses or allow for an open bidirec-
tional channel on which a client and server can repeatedly send data to each other.

 In this chapter, we’re going to look at RSocket, a relatively new protocol for inter-
application communication that allows for more than simple request-response com-
munication. And because it’s reactive in nature, it can be far more efficient than
blocking HTTP requests.

 Along the way, we’ll see how to develop RSocket communication in Spring. But
first, let’s take a high-level look at RSocket to see what makes it different from HTTP-
based communication.

14.1 Introducing RSocket
RSocket (https://rsocket.io/) is a binary application protocol that is asynchronous
and based on Reactive Streams. Put another way, RSocket offers asynchronous com-
munication between applications that supports a reactive model consistent with reac-
tive types like Flux and Mono that we learned about in chapter 12.

 As an alternative to HTTP-based communication, it is more flexible, providing
four distinct communication models: request-response, request-stream, fire-and-forget,
and channel.

 Request-response is the most familiar communication model from RSocket, mim-
icking how typical HTTP communication works. In the request-response model, a
client issues a single request to the server, and the server responds with a single
response. This is illustrated in figure 14.1, using Reactor’s Mono type to define the
request and response.

Although the request-response model may appear to be equivalent to the communica-
tion model offered by HTTP, it’s important to understand that RSocket is fundamen-
tally nonblocking and based on reactive types. Although the client will still wait for a
reply from the server, under the covers everything is nonblocking and reactive, mak-
ing more efficient use of threads.

 The request-stream communication model is similar to request-response, except that
after the client has sent a single request to the server, the server responds with a
stream of zero-to-many values in a stream. Figure 14.2 illustrates the request-stream
model using Mono for the request and Flux for the response.

Request Mono

Response Mono

Request-response

Client Server

A

1

Figure 14.1 RSocket’s request-response
communication model

https://rsocket.io/

371Introducing RSocket
In some cases, the client may need to send data to the server but doesn’t need a response.
RSocket provides the fire-and-forget model for those situations, as illustrated in figure 14.3.

In the fire-and-forget model, a client sends a request to the server, but the server
doesn’t send a response back.

 Finally, the most flexible of RSocket’s communication models is the channel model.
In the channel model, the client opens a bidirectional channel with the server, and
each can send data to the other at any time. Figure 14.4 illustrates the channel com-
munication style.

RSocket is supported on a variety of languages and platforms, including Java, Java-
Script, Kotlin, .NET, Go, and C++.1 Recent versions of Spring offer first-class support
for RSocket, making it easy to create servers and clients using familiar Spring idioms.

1 This is just a short list of languages that are listed on the RSocket website, but there may be community-led
implementations of RSocket for other languages.

Request Mono

Response Flux

Request-stream

Client Server

E D C B A

1

Figure 14.2 RSocket’s request-stream
communication model

Client Server1

Request Mono

Fire-and-forget

Figure 14.3 RSocket’s fire-and-forget
communication model

Client Server

1 2 3 4 5

E D C B A

Request Flux

Response Flux

Channel

Figure 14.4 RSocket’s channel
communication model

372 CHAPTER 14 Working with RSocket
 Let’s dive in and see how to create RSocket servers and clients that work with each
of the four communication models.

14.2 Creating a simple RSocket server and client
Spring offers incredible support for messaging with RSocket, including all four com-
munication models. To get started with RSocket, you’ll need to add the Spring Boot
RSocket starter to your project’s build. In a Maven POM file, the RSocket starter
dependency looks like this the following.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-rsocket</artifactId>
</dependency>

This same dependency is needed for both the server and client applications involved
in RSocket communication.

NOTE When choosing dependencies from the Spring Initializr, you might
see a similarly named WebSocket dependency. Although RSocket and Web-
Socket have similar names and although you can use WebSocket as a trans-
port for RSocket (and we’ll cover that later in this chapter), you do not need
to select the WebSocket dependency when working with RSocket.

Next, you’ll need to decide which communication model is best for your application.
There’s no clear answer that fits every situation, so you’ll want to weigh the choice
against the desired communication behavior of your application. However, as you’ll
see in the next several examples, the development model isn’t much different for
each of the communication models, so it’ll be easy to switch if you choose wrong.

 Let’s see how to create an RSocket server and client in Spring using each of the
communication models. Because each of RSocket’s communication models is differ-
ent and is best suited for specific use-case scenarios, we’ll set the Taco Cloud applica-
tion aside for now and see how to apply RSocket on different problem domains. We’ll
start by seeing how to apply the request-response communication model.

14.2.1 Working with request-response

Creating an RSocket server in Spring is as simple as creating a controller class, much
the same as you would for a web application or REST service. The following controller
is an example of an RSocket service that handles greetings from the client and
responds with another greeting.

package rsocket;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;

Listing 14.1 Spring Boot’s RSocket starter dependency

Listing 14.2 A simple RSocket request-response server

373Creating a simple RSocket server and client
import lombok.extern.slf4j.Slf4j;
import reactor.core.publisher.Mono;

@Controller
@Slf4j
public class GreetingController {

 @MessageMapping("greeting")
 public Mono<String> handleGreeting(Mono<String> greetingMono) {
 return greetingMono
 .doOnNext(greeting ->
 log.info("Received a greeting: {}", greeting))
 .map(greeting -> "Hello back to you!");
 }

}

As you can see, the key difference between a web controller and an RSocket controller is
that instead of handling HTTP requests for a given path (using @GetMapping or @Post-
Mapping), an RSocket controller handles incoming messages on a given route with the
@MessageMapping annotation. In this example, the handleGreeting() method is
invoked when a request is sent from the client to the route named "greeting".

 The handleGreeting() method receives the message payload from the client in a
Mono<String> parameter. In this case, the greeting is simple enough that a String is
sufficient, but the incoming payload could be a more complex type, if needed. Upon
receiving the Mono<String>, the method simply logs the fact that it received the greet-
ing and then uses the map() function on the Mono to create a new Mono<String> to
carry the response that is returned to the client.

 Although RSocket controllers aren’t handling HTTP requests for a path, the route
name can be made to have a pathlike appearance, including variable placeholders
that can be passed into the handler method. For example, consider the following twist
on the handleGreeting() method:

@MessageMapping("greeting/{name}")
public Mono<String> handleGreeting(
 @DestinationVariable("name") String name,
 Mono<String> greetingMono) {

 return greetingMono
 .doOnNext(greeting ->
 log.info("Received a greeting from {} : {}", name, greeting))
 .map(greeting -> "Hello to you, too, " + name);
}

In this case, the route specified in @MessageMapping contains a placeholder variable
named "name". It is denoted by curly braces, the same way as path variables in a Spring
MVC controller. Likewise, the method accepts a String parameter annotated with
@DestinationVariable that references the placeholder variable. Just like Spring

374 CHAPTER 14 Working with RSocket
MVC’s @PathVariable annotation, @DestinationVariable is used to extract the value
specified in the route’s placeholder and pass it into the handler method. Once inside
this new version of handleGreeting(), the name specified in the route will be used to
return a more personalized greeting to the client.

 There’s one more thing you must remember to do when creating an RSocket
server: specify the port to listen on. By default, RSocket services are TCP-based and
are their own server listening on a specific port. The spring.rsocket.server.port
configuration property sets the port for the RSocket server, as shown here:

spring:
 rsocket:
 server:
 port: 7000

The spring.rsocket.server.port property serves two purposes: enabling a server
and specifying which port the server should listen on. If it is not set, then Spring will
assume that your application will be acting as a client only, and no server port will
be listening. In this case, we’re starting a server, so setting the spring.rsocket
.server.port property as shown in the previous code will start a server listening on
port 7000.

 Now let’s turn our attention to the RSocket client. In Spring, RSocket clients are
implemented using an RSocketRequester. Spring Boot autoconfiguration for RSocket
will automatically create a bean of type RSocketRequester.Builder in the Spring
application context. You can inject that builder bean into any other bean you need to
create an instance of RSocketRequester.

 For example, here’s the start of an ApplicationRunner bean that is injected with
an RSocketRequester.Builder:

package rsocket;
import org.springframework.boot.ApplicationRunner;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.rsocket.RSocketRequester;

@Configuration
@Slf4j
public class RSocketClientConfiguration {

 @Bean
 public ApplicationRunner sender(RSocketRequester.Builder requesterBuilder)

{
 return args -> {
 RSocketRequester tcp = requesterBuilder.tcp("localhost", 7000);

 // ... send messages with RSocketRequester ...

 };
 }

}

375Creating a simple RSocket server and client
In this case, the builder is used to create an RSocketRequester that listens on local-
host, port 7000. The resulting RSocketRequester can then be used to send messages
to the server.

 In a request-response model, the request will need to (at least) specify the route
and the data payload. As you’ll recall, our server’s controller is handling requests for
the route named "greeting" and expects a String input. It also returns a String out-
put. The following complete listing of client code shows how to send a greeting to the
server and handle the response.

RSocketRequester tcp = requesterBuilder.tcp("localhost", 7000);

// ... send messages with RSocketRequester ...
tcp
 .route("greeting")
 .data("Hello RSocket!")
 .retrieveMono(String.class)
 .subscribe(response -> log.info("Got a response: {}", response));

This sends a greeting of "Hello RSocket!" to the server on the "greeting" route.
Notice that it also expects a Mono<String> in return, as specified in the call to
retrieveMono(). The subscribe() method subscribes to the returned Mono and han-
dles its payload by logging the value.

 Now let’s say you want to send a greeting to the other route that accepts a variable
value in its route. The client-side code works pretty much the same, except that you
include the variable placeholder in the value given to route() along with the value it
should contain as follows:

String who = "Craig";
tcp
 .route("greeting/{name}", who)
 .data("Hello RSocket!")
 .retrieveMono(String.class)
 .subscribe(response -> log.info("Got a response: {}", response));

Here, the message will be sent to the route named "greeting/Craig", which will be
handled by the controller handler method whose @MessageMapping specified the
route "greeting/{name}". Although you could also hardcode the name in the route or
use String concatenation to create the route name, using a placeholder in the client
makes it really easy to drop in a value without the messiness of String concatenation.

 Although the request-response model is probably the easiest of RSocket’s commu-
nication models to wrap your head around, it’s just the beginning. Let’s see how to
handle requests that could potentially return several responses with the request-
stream model.

Listing 14.3 Sending a request from a client

376 CHAPTER 14 Working with RSocket
14.2.2 Handling request-stream messaging

Not all interactions feature a single request and a single response. In a stock quote
scenario, for example, it may be useful to request a stream of stock quotes for a given
stock symbol. In a request-response model, the client would need to repeatedly poll
for the current stock price. But in a request-stream model, the client need ask for the
stock price only once and then subscribe to a stream of periodic updates.

 To illustrate the request-stream model, let’s implement the server and client for
the stock quote scenario. First, we’ll need to define an object that can carry the stock
quote information. The StockQuote class in the next listing will serve this purpose.

package rsocket;
import java.math.BigDecimal;
import java.time.Instant;

import lombok.AllArgsConstructor;
import lombok.Data;

@Data
@AllArgsConstructor
public class StockQuote {

 private String symbol;
 private BigDecimal price;
 private Instant timestamp;

}

As you can see, a StockQuote carries the stock symbol, the price, and a timestamp that
the price was valid. For brevity’s sake, we’re using Lombok to help with constructors
and accessor methods.

 Now let’s write a controller to handle requests for stock quotes. You’ll find that the
StockQuoteController in the next snippet is quite similar to the GreetingController
from the previous section.

package rsocket;
import java.math.BigDecimal;
import java.time.Duration;
import java.time.Instant;

import org.springframework.messaging.handler.annotation.DestinationVariable;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;

import reactor.core.publisher.Flux;

Listing 14.4 A model class representing a stock quote

Listing 14.5 An RSocket controller to stream stock quotes

377Creating a simple RSocket server and client
@Controller
public class StockQuoteController {

 @MessageMapping("stock/{symbol}")
 public Flux<StockQuote> getStockPrice(
 @DestinationVariable("symbol") String symbol) {
 return Flux
 .interval(Duration.ofSeconds(1))
 .map(i -> {
 BigDecimal price = BigDecimal.valueOf(Math.random() * 10);
 return new StockQuote(symbol, price, Instant.now());
 });
 }
}

Here, the getStockPrice() method handles incoming requests on the "stock/{sym-
bol}" route, accepting the stock symbol from the route with the @Destination-
Variable annotation. For simplicity’s sake, rather than look up actual stock prices, the
price is calculated as a random value (which may or may not accurately model the vol-
atility of some actual stocks).

 What’s most notable about getStockPrice(), however, is that it returns a
Flux<StockQuote> instead of a Mono<StockQuote>. This is a clue to Spring that this
handler method supports the request-stream model. Internally, the Flux is created ini-
tially as an interval that fires every one second, but that Flux is mapped to another
Flux that produces the random StockQuote. Put simply, a single request handled by
the getStockPrice() method returns multiple values, once every second.

 A client of a request-stream service is similar to one for a request-response service.
The only key difference is that instead of calling retrieveMono() on the requester, it
should call retreiveFlux(). The client of the stock quote service might look like this:

String stockSymbol = "XYZ";

RSocketRequester tcp = requesterBuilder.tcp("localhost", 7000);
tcp
 .route("stock/{symbol}", stockSymbol)
 .retrieveFlux(StockQuote.class)
 .doOnNext(stockQuote ->
 log.info(
 "Price of {} : {} (at {})",
 stockQuote.getSymbol(),
 stockQuote.getPrice(),
 stockQuote.getTimestamp())
)
 .subscribe();

At this point, we’ve seen how to create RSocket servers and clients that handle single
and multiple responses. But what if the server doesn’t have a response to send or the
client doesn’t need a response? Let’s see how to deal with the fire-and-forget commu-
nication model.

378 CHAPTER 14 Working with RSocket
14.2.3 Sending fire-and-forget messages

Imagine that you’re on a starship that has just come under attack from an enemy ves-
sel. You sound a ship-wide “red alert” so that all hands are in battle mode. You don’t
need to wait for a response from the ship’s computers affirming the alert status, nor
do you have time to wait for and read any kind of response in this situation. You set
the alert and then move on to more critical matters.

 This is an example of fire-and-forget. Although you may not forget that you’re at
red alert, given the circumstances, it’s more important that you deal with the battle
crisis than it is for you to handle a response from setting the alert.

 To simulate this scenario, we’ll create an RSocket server that handles alert statuses
but doesn’t return anything. First, we’ll need to define a class that defines the request
payload, such as the Alert class in the following code listing.

package rsocket;

import java.time.Instant;

import lombok.AllArgsConstructor;
import lombok.Data;

@Data
@AllArgsConstructor
public class Alert {

 private Level level;
 private String orderedBy;
 private Instant orderedAt;

 public enum Level {
 YELLOW, ORANGE, RED, BLACK
 }
}

The Alert object captures the alert level, who ordered the alert, and a timestamp for
when the alert was ordered (defined as an Instant). Again, we’re using Lombok for
constructors and accessor methods in the interest of keeping the listing short.

 On the server side, the AlertController in the following listing will handle Alert
messages.

package rsocket;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;
import lombok.extern.slf4j.Slf4j;
import reactor.core.publisher.Mono;

Listing 14.6 A model class representing an alert

Listing 14.7 An RSocket controller to handle alert updates

379Creating a simple RSocket server and client
@Controller
@Slf4j
public class AlertController {

 @MessageMapping("alert")
 public Mono<Void> setAlert(Mono<Alert> alertMono) {
 return alertMono
 .doOnNext(alert ->
 log.info("{} alert ordered by {} at {}",
 alert.getLevel(),
 alert.getOrderedBy(),
 alert.getOrderedAt())
)
 .thenEmpty(Mono.empty());
 }

}

The setAlert() method handles Alert messages on the "alert" route. To keep
things simple (albeit useless in an actual battle situation), it logs only the alerts. But
what’s important is that it returns a Mono<Void>, indicating that there is no response,
and, therefore, this handler method supports the fire-and-forget model.

 In the client, the code isn’t much different from the request-response or request-
stream models, as shown here:

RSocketRequester tcp = requesterBuilder.tcp("localhost", 7000);
tcp
 .route("alert")
 .data(new Alert(
 Alert.Level.RED, "Craig", Instant.now()))
 .send()
 .subscribe();
log.info("Alert sent");

Notice, however, that instead of calling retrieveMono() or retrieveFlux(), the cli-
ent merely calls send() with no expectation of a response.

 Now let’s take a look at how to handle the channel communication model in which
both the server and the client send multiple messages to each other.

14.2.4 Sending messages bidirectionally

In all of the communication models we’ve seen thus far, the client sends a single
request, and the server responds with zero, one, or many responses. In the request-
stream model, the server was able to stream back multiple responses to the client, but
the client was still limited to sending only a single request. But why should the server
have all of the fun? Why can’t the client send multiple requests?

 That’s where the channel communication model comes in handy. In the channel
communication model, the client can stream multiple requests to the server, which
may also stream back multiple responses in a bidirectional conversation between both

380 CHAPTER 14 Working with RSocket
sides. It’s the most flexible of RSocket’s communication models, although also the
most complex.

 To demonstrate how to work with RSocket channel communication in Spring, let’s
create a service that calculates gratuity on a bill, receiving a Flux of requests and
responding with a Flux of responses. First, we’ll need to define the model objects that
represent the request and the response. The GratuityIn class, shown next, represents
the request sent by the client and received by the server.

package rsocket;

import java.math.BigDecimal;

import lombok.AllArgsConstructor;
import lombok.Data;

@Data
@AllArgsConstructor
public class GratuityIn {

 private BigDecimal billTotal;
 private int percent;

}

GratuityIn carries two essential pieces of information required to calculate gratuity:
the bill total and a percentage. The GratuityOut class shown in the next code snippet
represents the response, echoing the values given in GratuityIn, along with a gratu-
ity property containing the calculated gratuity amount.

package rsocket;

import java.math.BigDecimal;

import lombok.AllArgsConstructor;
import lombok.Data;

@Data
@AllArgsConstructor
public class GratuityOut {

 private BigDecimal billTotal;
 private int percent;
 private BigDecimal gratuity;

}

The GratuityController in the next code listing handles the gratuity request and
looks a lot like the controllers we’ve written earlier in this chapter.

Listing 14.8 A model representing an inbound gratuity request

Listing 14.9 A model representing an outbound gratuity response

381Creating a simple RSocket server and client
package rsocket;
import java.math.BigDecimal;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;

import lombok.extern.slf4j.Slf4j;
import reactor.core.publisher.Flux;

@Controller
@Slf4j
public class GratuityController {

 @MessageMapping("gratuity")
 public Flux<GratuityOut> calculate(Flux<GratuityIn> gratuityInFlux) {
 return gratuityInFlux
 .doOnNext(in -> log.info("Calculating gratuity: {}", in))
 .map(in -> {
 double percentAsDecimal = in.getPercent() / 100.0;
 BigDecimal gratuity = in.getBillTotal()
 .multiply(BigDecimal.valueOf(percentAsDecimal));
 return new GratuityOut(
 in.getBillTotal(), in.getPercent(), gratuity);
 });
 }

}

There is, however, one significant difference between the previous example and the
earlier ones: not only does this code return a Flux, but it also accepts a Flux as input.
As with the request-stream model, the Flux returned enables the controller to stream
multiple values to the client. But the Flux parameter is what differentiates the chan-
nel model from the request-stream model. The Flux parameter coming in allows the
controller to handle a stream of requests from the client coming into the handler
method.

 The client side of the channel model differs from the client of the request-
stream model only in that it sends a Flux<GratuityIn> to the server instead of a
Mono<GratuityIn>, as shown here.

RSocketRequester tcp = requesterBuilder.tcp("localhost", 7000);

Flux<GratuityIn> gratuityInFlux =
 Flux.fromArray(new GratuityIn[] {
 new GratuityIn(BigDecimal.valueOf(35.50), 18),
 new GratuityIn(BigDecimal.valueOf(10.00), 15),
 new GratuityIn(BigDecimal.valueOf(23.25), 20),
 new GratuityIn(BigDecimal.valueOf(52.75), 18),

Listing 14.10 An RSocket controller that handles multiple messages on a channel

Listing 14.11 A client that sends and receives multiple messages over an open channel

382 CHAPTER 14 Working with RSocket
 new GratuityIn(BigDecimal.valueOf(80.00), 15)
 })
 .delayElements(Duration.ofSeconds(1));

 tcp
 .route("gratuity")
 .data(gratuityInFlux)
 .retrieveFlux(GratuityOut.class)
 .subscribe(out ->
 log.info(out.getPercent() + "% gratuity on "
 + out.getBillTotal() + " is "
 + out.getGratuity()));

In this case, the Flux<GratuityIn> is created statically using the fromArray() method,
but it could be a Flux created from any source of data, perhaps retrieved from a reac-
tive data repository.

 You may have observed a pattern in how the reactive types accepted and returned
by the server controller’s handler methods determine the RSocket communication
model supported. Table 14.1 summarizes the relationship between the server’s input/
output types and the RSocket communication models.

You may wonder whether it’s possible for a server to accept a Flux and return a Mono.
In short, that’s not an option. Although you may imagine handling multiple requests
on an incoming Flux and responding with a Mono<Void> in a weird mashup of the
channel and fire-and-forget models, there is no RSocket model that maps to that sce-
nario. Therefore, it’s not supported.

14.3 Transporting RSocket over WebSocket
By default, RSocket communication takes place over a TCP socket. But in some cases,
TCP isn’t an option. Consider the following two situations:

 The client is written in JavaScript and is running in a user’s web browser.
 The client must cross a gateway or firewall boundary to get to the server, and

the firewall doesn’t allow communication over arbitrary ports.

Table 14.1 The supported RSocket model is determined by the handler method’s parameter and
return types.

RSocket model Handler parameter Handler returns

Request-response Mono Mono

Request-stream Mono Flux

Fire-and-forget Mono Mono<Void>

Channel Flux Flux

383Transporting RSocket over WebSocket
Moreover, WebSocket itself lacks any support for routing, requiring that routing
details be defined at the application level. By layering RSocket over WebSocket, Web-
Socket will benefit from RSocket’s built-in routing support.

 In these situations, RSocket can be transported over WebSocket. WebSocket com-
munication takes place over HTTP, which is the primary means of communication in
all web browsers and is usually allowed through firewalls.

 To switch from the TCP transport to the WebSocket transport, you need to make
only a few minor changes in the server and client. To start, because WebSocket is car-
ried over HTTP, you need to be sure that the server-side application supports han-
dling HTTP requests. Put simply, you need to add the following WebFlux starter
dependency to the project build (if it’s not already there):

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

You also need to specify that you want to use the WebSocket transport in the server-
side configuration by setting the spring.rsocket.server.transport property. Also,
you need to set the HTTP path that the RSocket communication will take place on by
setting spring.rsocket.server.mapping-path. The server’s configuration will look
like this in application.yml:

spring:
 rsocket:
 server:
 transport: websocket
 mapping-path: /rsocket

Unlike the TCP transport, which communicates over a specific port, the WebSocket
transport works over a specific HTTP path. Thus, there is no need to set spring
.rsocket.server.port as with RSocket over TCP.

 That’s all you’ll need to do on the server side to enable WebSocket transport for
RSocket. Everything else will work exactly the same as with TCP.

 On the client side, only one small change is required. Rather than create a TCP-
based requester, you want to create a WebSocket-based requester by calling the web-
socket() method on the RSocketRequester.Builder like so:

RSocketRequester requester = requesterBuilder.websocket(
 URI.create("ws://localhost:8080/rsocket"));

requester
 .route("greeting")
 .data("Hello RSocket!")
 .retrieveMono(String.class)
 .subscribe(response -> log.info("Got a response: {}", response));

And that’s all there is to transporting RSocket over WebSocket!

384 CHAPTER 14 Working with RSocket
Summary
 RSocket is an asynchronous binary protocol that offers four communication

models: request-response, request-stream, fire-and-forget, and channel.
 Spring supports RSocket on the server through controllers and handler meth-

ods annotated with @MessageHandler.
 The RSocketRequester enables client-side communication with RSocket.
 In both cases, Spring’s RSocket support works through Reactor’s Flux and Mono

reactive types for fully reactive communication.
 RSocket communication takes place over TCP by default but can also be trans-

ported over WebSocket to deal with firewall constraints and browser clients.

Part 4

Deployed Spring

In part 4, you’ll ready an application for production and see how to deploy it.
Chapter 15 introduces the Spring Boot Actuator, an extension to Spring Boot
that exposes the internals of a running Spring application as REST endpoints
and JMX MBeans. In chapter 16, you’ll see how to use Spring Boot Admin to put
a user-friendly browser-based administrative application on top of the Actuator.
You’ll also see how to register client applications with and secure the Admin
Server. Chapter 17 discusses how to expose and consume Spring beans as JMX
MBeans. Finally, in chapter 18, you’ll see how to deploy your Spring application
in a variety of production environments, including containerized Spring applica-
tions that can run in Kubernetes.

Working with
Spring Boot Actuator
Have you ever tried to guess what’s inside a wrapped gift? You shake it, weigh it, and
measure it. And you might even have a solid idea as to what’s inside. But until you
open it up, there’s no way of knowing for sure.

 A running application is kind of like a wrapped gift. You can poke at it and
make reasonable guesses as to what’s going on under the covers. But how can you
know for sure? If only there were some way that you could peek inside a running
application, see how it’s behaving, check on its health, and maybe even trigger
operations that influence how it runs!

 In this chapter, we’re going to explore Spring Boot Actuator. Actuator offers
production-ready features such as monitoring and metrics to Spring Boot applica-
tions. Actuator’s features are provided by way of several endpoints, which are made
available over HTTP as well as through JMX MBeans. This chapter focuses primar-
ily on HTTP endpoints, saving JMX endpoints for chapter 18.

This chapter covers
 Enabling Actuator in Spring Boot projects

 Exploring Actuator endpoints

 Customizing Actuator

 Securing Actuator
387

388 CHAPTER 15 Working with Spring Boot Actuator
15.1 Introducing Actuator
In a machine, an actuator is a component that’s responsible for controlling and mov-
ing a mechanism. In a Spring Boot application, the Spring Boot Actuator plays that
same role, enabling us to see inside of a running application and, to some degree,
control how the application behaves.

 Using endpoints exposed by Actuator, we can ask things about the internal state of
a running Spring Boot application, such as the following:

 What configuration properties are available in the application environment?
 What are the logging levels of various packages in the application?
 How much memory is being consumed by the application?
 How many times has a given HTTP endpoint been requested?
 What is the health of the application and any external services it coordinates

with?

To enable Actuator in a Spring Boot application, you simply need to add Actuator’s
starter dependency to your build. In any Spring Boot application Maven pom.xml file,
the following <dependency> entry does the trick:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Once the Actuator starter is part of the project build, the application will be equipped
with several out-of-the-box Actuator endpoints, including those described in table 15.1.

Table 15.1 Actuator endpoints for peeking inside and manipulating the state of a running Spring Boot
application

HTTP method Path Description

GET /auditevents Produces a report of any audit events that have been fired

GET /beans Describes all the beans in the Spring application context

GET /conditions Produces a report of autoconfiguration conditions that
either passed or failed, leading to the beans created in the
application context

GET /configprops Describes all configuration properties along with the current
values

GET, POST, DELETE /env Produces a report of all property sources and their proper-
ties available to the Spring application

GET /env/{toMatch} Describes the value of a single environment property

GET /health Returns the aggregate health of the application and (possi-
bly) the health of external dependent applications

GET /heapdump Downloads a heap dump

389Introducing Actuator
In addition to HTTP endpoints, all of the Actuator endpoints in table 15.1, with the
lone exception of /heapdump, are also exposed as JMX MBeans. We’ll look at the JMX
side of Actuator in chapter 17.

15.1.1 Configuring Actuator’s base path

By default, the paths for all the endpoints shown in table 15.1 are prefixed with /actu-
ator. This mean that, for example, if you wish to retrieve health information about
your application from Actuator, then issuing a GET request for /actuator/health will
return the information you need.

 The Actuator prefix path can be changed by setting the management.endpoint
.web.base-path property. For example, if you’d rather the prefix be /management,
you would set the management.endpoints.web.base-path property like this:

management:
 endpoints:
 web:
 base-path: /management

With this property set as shown, you’d need to make a GET request for /management/
health to obtain the application’s health information.

 Whether or not you decide to change the Actuator base path, all Actuator end-
points in this chapter will be referred to without the base path for the sake of brevity.
For example, when the /health endpoint is mentioned, it is the /{base path}/health

GET /httptrace Produces a trace of the most recent 100 requests

GET /info Returns any developer-defined information about the appli-
cation

GET /loggers Produces a list of packages in the application along with
their configured and effective logging levels

GET, POST /loggers/{name} Returns the configured and effective logging level of a given
logger; the effective logging level can be set with a POST
request

GET /mappings Produces a report of all HTTP mappings and their corre-
sponding handler methods

GET /metrics Returns a list of all metrics categories

GET /metrics/{name} Returns a multidimensional set of values for a given metric

GET /scheduledtasks Lists all scheduled tasks

GET /threaddump Returns a report of all application threads

Table 15.1 Actuator endpoints for peeking inside and manipulating the state of a running Spring Boot
application (continued)

HTTP method Path Description

390 CHAPTER 15 Working with Spring Boot Actuator
endpoint that is intended, or more precisely, the /actuator/health endpoint if the
base path hasn’t been changed.

15.1.2 Enabling and disabling Actuator endpoints

You may have noticed that only the /health endpoint is enabled by default. Most Actu-
ator endpoints carry sensitive information and should be secured. You can use Spring
Security to lock down Actuator, but because Actuator isn’t secured on its own, most of
the endpoints are disabled by default, requiring you to opt in for the endpoints you
wish to expose.

 Two configuration properties, management.endpoints.web.exposure.include
and management.endpoints.web.exposure.exclude, can be used to control which
endpoints are exposed. Use management.endpoints.web.exposure.include to spec-
ify which endpoints you want to expose. For example, if you wish to expose only the
/health, /info, /beans, and /conditions endpoints, you can specify that with the fol-
lowing configuration:

management:
 endpoints:
 web:
 exposure:
 include: health,info,beans,conditions

The management.endpoints.web.exposure.include property also accepts an asterisk
(*) as a wildcard to indicate that all Actuator endpoints should be exposed, as shown
here:

management:
 endpoints:
 web:
 exposure:
 include: '*'

If you want to expose all but a few endpoints, it’s typically easier to include them all with
a wildcard and then explicitly exclude a few. For example, to expose all Actuator end-
points except for /threaddump and /heapdump, you could set both the management
.endpoints.web.exposure.include and management.endpoints.web.exposure.exclude
properties like this:

management:
 endpoints:
 web:
 exposure:
 include: '*'
 exclude: threaddump,heapdump

Should you decide to expose more than /health and /info, it’s probably a good idea
to configure Spring Security to restrict access to the other endpoints. We’ll look at

391Consuming Actuator endpoints
how to secure Actuator endpoints in section 15.4. For now, though, let’s look at how
you can consume the HTTP endpoints exposed by Actuator.

15.2 Consuming Actuator endpoints
Actuator can bestow a veritable treasure trove of interesting and useful information
about a running application by way of the HTTP endpoints listed in table 15.1. As
HTTP endpoints, these can be consumed like any REST API, using whatever HTTP
client you wish, including Spring’s RestTemplate and WebClient, from a JavaScript
application, or simply with the curl command-line client.

 For the sake of exploring Actuator endpoints, we’ll use the curl command-line cli-
ent in this chapter. In chapter 16, I’ll introduce you to Spring Boot Admin, which lay-
ers a user-friendly web application on top of an application’s Actuator endpoints.

 To get some idea of what endpoints Actuator has to offer, a GET request to Actua-
tor’s base path will provide HATEOAS links for each of the endpoints. Using curl to
make a request to /actuator, you might get a response something like this (abridged
to save space):

$ curl localhost:8080/actuator
{
 "_links": {
 "self": {
 "href": "http:/ /localhost:8080/actuator",
 "templated": false
 },
 "auditevents": {
 "href": "http:/ /localhost:8080/actuator/auditevents",
 "templated": false
 },
 "beans": {
 "href": "http:/ /localhost:8080/actuator/beans",
 "templated": false
 },
 "health": {
 "href": "http:/ /localhost:8080/actuator/health",
 "templated": false
 },
 ...
 }
}

Because different libraries may contribute additional Actuator endpoints of their own,
and because some endpoints may be not be exported, the actual results may vary from
application to application.

 In any event, the set of links returned from Actuator’s base path serve as a map to
all that Actuator has to offer. Let’s begin our exploration of the Actuator landscape
with the two endpoints that provide essential information about an application: the
/health and /info endpoints.

392 CHAPTER 15 Working with Spring Boot Actuator
15.2.1 Fetching essential application information

At the beginning of a typical visit to the doctor, we’re usually asked two very basic ques-
tions: who are you and how do you feel? Although the words chosen by the doctor or
nurse may be different, they ultimately want to know a little bit about the person
they’re treating and why you’re seeing them.

 Those same essential questions are what Actuator’s /info and /health endpoints
answer for a Spring Boot application. The /info endpoint tells you a little about the
application, and the /health endpoint tells you how healthy the application is.

ASKING FOR INFORMATION ABOUT AN APPLICATION

To learn a little bit of information about a running Spring Boot application, you can
ask the /info endpoint. By default, however, the /info endpoint isn’t very informative.
Here’s what you might see when you make a request for it using curl:

$ curl localhost:8080/actuator/info
{}

Although it may seem that the /info endpoint isn’t very useful, it’s best to think of it as
a clean canvas on which you may paint any information you’d like to present.

 We have several ways to supply information for the /info endpoint to return, but
the most straightforward way is to create one or more configuration properties where
the property name is prefixed with info. For example, suppose that you want the
response from the /info endpoint to include support contact information, including
an email address and phone number. To do that, you can configure the following
properties in the application.yml file:

info:
 contact:
 email: support@tacocloud.com
 phone: 822-625-6831

Neither the info.contact.email property nor the info.contact.phone property has
any special meaning to Spring Boot or any bean that may be in the application con-
text. However, by virtue of the fact that it’s prefixed with info, the /info endpoint will
now echo the value of the property in its response as follows:

{
 "contact": {
 "email": "support@tacocloud.com",
 "phone": "822-625-6831"
 }
}

In section 15.3.1, we’ll look at a few other ways to populate the /info endpoint with
useful information about an application.

393Consuming Actuator endpoints
INSPECTING APPLICATION HEALTH

Issuing an HTTP GET request for the /health endpoint results in a simple JSON
response with the health status of your application. For example, here’s what you
might see when using curl to fetch the /health endpoint:

$ curl localhost:8080/actuator/health
{"status":"UP"}

You may be wondering how useful it is to have an endpoint that reports that the appli-
cation is UP. What would it report if the application were down?

 As it turns out, the status shown here is an aggregate status of one or more health
indicators. Health indicators report the health of external systems that the application
interacts with, such as databases, message brokers, and even Spring Cloud compo-
nents such as Eureka and the Config Server. The health status of each indicator could
be one of the following:

 UP—The external system is up and is reachable.
 DOWN—The external system is down or unreachable.
 UNKNOWN—The status of the external system is unclear.
 OUT_OF_SERVICE—The external system is reachable but is currently unavailable.

The health statuses of all health indicators are then aggregated into the application’s
overall health status, applying the following rules:

 If all health indicators are UP, then the application health status is UP.
 If one or more health indicators are DOWN, then the application health status

is DOWN.
 If one or more health indicators are OUT_OF_SERVICE, then the application

health status is OUT_OF_SERVICE.
 UNKNOWN health statuses are ignored and aren’t rolled into the application’s

aggregate health.

By default, only the aggregate status is returned in response to a request for /health.
You can configure the management.endpoint.health.show-details property, how-
ever, to show the full details of all health indicators, as shown next:

management:
 endpoint:
 health:
 show-details: always

The management.endpoint.health.show-details property defaults to never, but it
can also be set to always to always show the full details of all health indicators, or to
when-authorized to show the full details only when the requesting client is fully
authorized.

394 CHAPTER 15 Working with Spring Boot Actuator
 Now when you issue a GET request to the /health endpoint, you get full health indi-
cator details. Here’s a sample of what that might look like for a service that integrates
with the Mongo document database:

{
 "status": "UP",
 "details": {
 "mongo": {
 "status": "UP",
 "details": {
 "version": "3.5.5"
 }
 },
 "diskSpace": {
 "status": "UP",
 "details": {
 "total": 499963170816,
 "free": 177284784128,
 "threshold": 10485760
 }
 }
 }
}

All applications, regardless of any other external dependencies, will have a health
indicator for the filesystem named diskSpace. The diskSpace health indicator indi-
cates the health of the filesystem (hopefully, UP), which is determined by how much
free space is remaining. If the available disk space drops below the threshold, it will
report a status of DOWN.

 In the preceding example, there’s also a mongo health indicator, which reports the
status of the Mongo database. Details shown include the Mongo database version.

 Autoconfiguration ensures that only health indicators that are pertinent to an
application will appear in the response from the /health endpoint. In addition to the
mongo and diskSpace health indicators, Spring Boot also provides health indicators
for several other external databases and systems, including the following:

 Cassandra
 Config Server
 Couchbase
 Eureka
 Hystrix
 JDBC data sources
 Elasticsearch
 InfluxDB
 JMS message brokers
 LDAP
 Email servers

395Consuming Actuator endpoints
 Neo4j
 Rabbit message brokers
 Redis
 Solr

Additionally, third-party libraries may contribute their own health indicators. We’ll
look at how to write a custom health indicator in section 15.3.2.

 As you’ve seen, the /health and /info endpoints provide general information
about the running application. Meanwhile, other Actuator endpoints provide insight
into the application configuration. Let’s look at how Actuator can show how an appli-
cation is configured.

15.2.2 Viewing configuration details

Beyond receiving general information about an application, it can be enlightening to
understand how an application is configured. What beans are in the application con-
text? What autoconfiguration conditions passed or failed? What environment proper-
ties are available to the application? How are HTTP requests mapped to controllers?
What logging level are one or more packages or classes set to?

 These questions are answered by Actuator’s /beans, /conditions, /env, /config-
props, /mappings, and /loggers endpoints. And in some cases, such as /env and /log-
gers, you can even adjust the configuration of a running application on the fly. We’ll
look at how each of these endpoints gives insight into the configuration of a running
application, starting with the /beans endpoint.

GETTING A BEAN WIRING REPORT

The most essential endpoint for exploring the Spring application context is the
/beans endpoint. This endpoint returns a JSON document describing every single
bean in the application context, its Java type, and any of the other beans it’s
injected with.

 A complete response from a GET request to /beans could easily fill this entire chap-
ter. Instead of examining the complete response from /beans, let’s consider the fol-
lowing snippet, which focuses on a single bean entry:

{
 "contexts": {
 "application-1": {
 "beans": {
...
 "ingredientsController": {
 "aliases": [],
 "scope": "singleton",
 "type": "tacos.ingredients.IngredientsController",
 "resource": "file [/Users/habuma/Documents/Workspaces/
 TacoCloud/ingredient-service/target/classes/tacos/
 ingredients/IngredientsController.class]",
 "dependencies": [
 "ingredientRepository"

396 CHAPTER 15 Working with Spring Boot Actuator
]
 },
...
 },
 "parentId": null
 }
 }
}

At the root of the response is the contexts element, which includes one subelement
for each Spring application context in the application. Within each application con-
text is a beans element that holds details for all the beans in the application context.

 In the preceding example, the bean shown is the one whose name is ingredients-
Controller. You can see that it has no aliases, is scoped as a singleton, and is of type
tacos.ingredients.IngredientsController. Moreover, the resource property gives
the path to the class file that defines the bean. And the dependencies property lists all
other beans that are injected into the given bean. In this case, the ingredients-
Controller bean is injected with a bean whose name is ingredientRepository.

EXPLAINING AUTOCONFIGURATION

As you’ve seen, autoconfiguration is one of the most powerful things that Spring Boot
offers. Sometimes, however, you may wonder why something has been autoconfig-
ured. Or you may expect something to have been autoconfigured and are left wonder-
ing why it hasn’t been. In that case, you can make a GET request to /conditions to get
an explanation of what took place in autoconfiguration.

 The autoconfiguration report returned from /conditions is divided into three
parts: positive matches (conditional configuration that passed), negative matches
(conditional configuration that failed), and unconditional classes. The following snip-
pet from the response to a request to /conditions shows an example of each section:

{
 "contexts": {
 "application-1": {
 "positiveMatches": {
...
 "MongoDataAutoConfiguration#mongoTemplate": [
 {
 "condition": "OnBeanCondition",
 "message": "@ConditionalOnMissingBean (types:
 org.springframework.data.mongodb.core.MongoTemplate;
 SearchStrategy: all) did not find any beans"
 }
],
...
 },
 "negativeMatches": {
...
 "DispatcherServletAutoConfiguration": {
 "notMatched": [

397Consuming Actuator endpoints
 {
 "condition": "OnClassCondition",
 "message": "@ConditionalOnClass did not find required
 class 'org.springframework.web.servlet.
 DispatcherServlet'"
 }
],
 "matched": []
 },
...
 },
 "unconditionalClasses": [
...
 "org.springframework.boot.autoconfigure.context.
 ConfigurationPropertiesAutoConfiguration",
...
]
 }
 }
}

Under the positiveMatches section, you see that a MongoTemplate bean was config-
ured by autoconfiguration because one didn’t already exist. The autoconfiguration
that caused this includes a @ConditionalOnMissingBean annotation, which passes off
the bean to be configured if it hasn’t already been explicitly configured. But in this
case, no beans of type MongoTemplate were found, so autoconfiguration stepped in
and configured one.

 Under negativeMatches, Spring Boot autoconfiguration considered configuring a
DispatcherServlet. But the @ConditionalOnClass conditional annotation failed
because DispatcherServlet couldn’t be found.

 Finally, a ConfigurationPropertiesAutoConfiguration bean was configured
unconditionally, as seen under the unconditionalClasses section. Configuration
properties are foundational to how Spring Boot operates, so you should autoconfig-
ure any configuration pertaining to configuration properties without any conditions.

INSPECTING THE ENVIRONMENT AND CONFIGURATION PROPERTIES

In addition to knowing how your application beans are wired together, you might also
be interested in learning what environment properties are available and what configu-
ration properties were injected into the beans.

 When you issue a GET request to the /env endpoint, you’ll receive a rather lengthy
response that includes properties from all property sources in play in the Spring appli-
cation. This includes properties from environment variables, JVM system properties,
application.properties and application.yml files, and even the Spring Cloud Config
Server (if the application is a client of the Config Server).

 The following listing shows a greatly abridged example of the kind of response
you might get from the /env endpoint, to give you some idea of the kind of informa-
tion it provides.

398 CHAPTER 15 Working with Spring Boot Actuator
$ curl localhost:8080/actuator/env
{
 "activeProfiles": [
 "development"
],
 "propertySources": [
...
 {
 "name": "systemEnvironment",
 "properties": {
 "PATH": {
 "value": "/usr/bin:/bin:/usr/sbin:/sbin",
 "origin": "System Environment Property \"PATH\""
 },
...
 "HOME": {
 "value": "/Users/habuma",
 "origin": "System Environment Property \"HOME\""
 }
 }
 },
 {
 "name": "applicationConfig: [classpath:/application.yml]",
 "properties": {
 "spring.application.name": {
 "value": "ingredient-service",
 "origin": "class path resource [application.yml]:3:11"
 },
 "server.port": {
 "value": 8080,
 "origin": "class path resource [application.yml]:9:9"
 },
...
 }
 },
...
]
}

Although the full response from /env provides even more information, what’s shown in
listing 15.1 contains a few noteworthy elements. First, notice that near the top of the
response is a field named activeProfiles. In this case, it indicates that the develop-
ment profile is active. If any other profiles were active, those would be listed as well.

 Next, the propertySources field is an array containing an entry for every property
source in the Spring application environment. In listing 15.1, only the system-
Environment and an applicationConfig property source referencing the applica-
tion.yml file are shown.

 Within each property source is a listing of all properties provided by that source,
paired with their values. In the case of the application.yml property source, the origin

Listing 15.1 The results from the /env endpoint

399Consuming Actuator endpoints
field for each property tells exactly where the property is set, including the line and
column within application.yml.

 The /env endpoint can also be used to fetch a specific property when that prop-
erty’s name is given as the second element of the path. For example, to examine the
server.port property, submit a GET request for /env/server.port, as shown here:

$ curl localhost:8080/actuator/env/server.port
{
 "property": {
 "source": "systemEnvironment", "value": "8080"
 },
 "activeProfiles": ["development"],
 "propertySources": [
 { "name": "server.ports" },
 { "name": "mongo.ports" },
 { "name": "systemProperties" },
 { "name": "systemEnvironment",
 "property": {
 "value": "8080",
 "origin": "System Environment Property \"SERVER_PORT\""
 }
 },
 { "name": "random" },
 { "name": "applicationConfig: [classpath:/application.yml]",
 "property": {
 "value": 0,
 "origin": "class path resource [application.yml]:9:9"
 }
 },
 { "name": "springCloudClientHostInfo" },
 { "name": "refresh" },
 { "name": "defaultProperties" },
 { "name": "Management Server" }
]
}

As you can see, all property sources are still represented, but only those that set the
specified property will contain any additional information. In this case, both the
systemEnvironment property source and the application.yml property source had val-
ues for the server.port property. Because the systemEnvironment property source
takes precedence over any of the property sources listed below it, its value of 8080
wins. The winning value is reflected near the top under the property field.

 The /env endpoint can be used for more than just reading property values. By sub-
mitting a POST request to the /env endpoint, along with a JSON document with name
and value fields, you can also set properties in the running application. For example,
to set a property named tacocloud.discount.code to TACOS1234, you can use curl to
submit the POST request at the command line like this:

$ curl localhost:8080/actuator/env \
 -d'{"name":"tacocloud.discount.code","value":"TACOS1234"}' \

400 CHAPTER 15 Working with Spring Boot Actuator
 -H "Content-type: application/json"
{"tacocloud.discount.code":"TACOS1234"}

After submitting the property, the newly set property and its value are returned in the
response. Later, should you decide you no longer need that property, you can submit
a DELETE request to the /env endpoint as follows to delete all properties created
through that endpoint:

$ curl localhost:8080/actuator/env -X DELETE
{"tacocloud.discount.code":"TACOS1234"}

As useful as setting properties through Actuator’s API can be, it’s important to be
aware that any properties set with a POST request to the /env endpoint apply only to
the application instance receiving the request, are temporary, and will be lost when
the application restarts.

NAVIGATING HTTP REQUEST MAPPINGS

Although Spring MVC’s (and Spring WebFlux’s) programming model makes it easy to
handle HTTP requests by simply annotating methods with request-mapping annota-
tions, it can sometimes be challenging to get a big-picture understanding of all the
kinds of HTTP requests that an application can handle and what kinds of components
handle those requests.

 Actuator’s /mappings endpoint offers a one-stop view of every HTTP request han-
dler in an application, whether it be from a Spring MVC controller or one of Actua-
tor’s own endpoints. To get a complete list of all the endpoints in a Spring Boot
application, make a GET request to the /mappings endpoint, and you might receive
something that’s a little bit like the abridged response shown next.

$ curl localhost:8080/actuator/mappings | jq
{
 "contexts": {
 "application-1": {
 "mappings": {
 "dispatcherHandlers": {
 "webHandler": [
...
 {
 "predicate": "{[/ingredients],methods=[GET]}",
 "handler": "public

reactor.core.publisher.Flux<tacos.ingredients.Ingredient>
tacos.ingredients.IngredientsController.allIngredients()",

 "details": {
 "handlerMethod": {
 "className": "tacos.ingredients.IngredientsController",
 "name": "allIngredients",
 "descriptor": "()Lreactor/core/publisher/Flux;"
 },

Listing 15.2 HTTP mappings as shown by the /mappings endpoint

401Consuming Actuator endpoints
 "handlerFunction": null,
 "requestMappingConditions": {
 "consumes": [],
 "headers": [],
 "methods": [
 "GET"
],
 "params": [],
 "patterns": [
 "/ingredients"
],
 "produces": []
 }
 }
 },
...
]
 }
 },
 "parentId": "application-1"
 },
 "bootstrap": {
 "mappings": {
 "dispatcherHandlers": {}
 },
 "parentId": null
 }
 }
}

Here, the response from the curl command line is piped to a utility called jq
(https://stedolan.github.io/jq/), which, among other things, pretty-prints the JSON
returned from the request in an easily readable format. For the sake of brevity, this
response has been abridged to show only a single request handler. Specifically, it
shows that GET requests for /ingredients will be handled by the allIngredients()
method of IngredientsController.

MANAGING LOGGING LEVELS

Logging is an important feature of any application. Logging can provide a means of
auditing as well as a crude means of debugging.

 Setting logging levels can be quite a balancing act. If you set the logging level to be
too verbose, there may be too much noise in the logs, and finding useful information
may be difficult. On the other hand, if you set logging levels to be too slack, the logs
may not be of much value in understanding what an application is doing.

 Logging levels are typically applied on a package-by-package basis. If you’re ever
wondering what logging levels are set in your running Spring Boot application, you
can issue a GET request to the /loggers endpoint. The following JSON code shows an
excerpt from a response to /loggers:

https://stedolan.github.io/jq/

402 CHAPTER 15 Working with Spring Boot Actuator
{
 "levels": ["OFF", "ERROR", "WARN", "INFO", "DEBUG", "TRACE"],
 "loggers": {
 "ROOT": {
 "configuredLevel": "INFO", "effectiveLevel": "INFO"
 },
...
 "org.springframework.web": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
...
 "tacos": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
 "tacos.ingredients": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 },
 "tacos.ingredients.IngredientServiceApplication": {
 "configuredLevel": null, "effectiveLevel": "INFO"
 }
 }
}

The response starts off with a list of all valid logging levels. After that, the loggers ele-
ment lists logging-level details for each package in the application. The configured-
Level property shows the logging level that has been explicitly configured (or null
if it hasn’t been explicitly configured). The effectiveLevel property gives the
effective logging level, which may have been inherited from a parent package or
from the root logger.

 Although this excerpt shows logging levels only for the root logger and four pack-
ages, the complete response will include logging-level entries for every single package
in the application, including those for libraries that are in use. If you’d rather focus
your request on a specific package, you can specify the package name as an extra path
component in the request.

 For example, if you just want to know what logging levels are set for the tacocloud
.ingredients package, you can make a request to /loggers/tacos.ingredients as follows:

{
 "configuredLevel": null,
 "effectiveLevel": "INFO"
}

Aside from returning the logging levels for the application packages, the /loggers
endpoint also allows you to change the configured logging level by issuing a POST
request. For example, suppose you want to set the logging level of the tacocloud
.ingredients package to DEBUG. The following curl command will achieve that:

$ curl localhost:8080/actuator/loggers/tacos/ingredients \
 -d'{"configuredLevel":"DEBUG"}' \
 -H"Content-type: application/json"

403Consuming Actuator endpoints
Now that the logging level has been changed, you can issue a GET request to /loggers/
tacos/ingredients as shown here to see that it has been changed:

{
 "configuredLevel": "DEBUG",
 "effectiveLevel": "DEBUG"
}

Notice that where the configuredLevel was previously null, it’s now DEBUG. That
change carries over to the effectiveLevel as well. But what’s most important is that if
any code in that package logs anything at debug level, the log files will include that
debug-level information.

15.2.3 Viewing application activity

It can be useful to keep an eye on activity in a running application, including the
kinds of HTTP requests that the application is handling and the activity of all of the
threads in the application. For this, Actuator provides the /httptrace, /threaddump,
and /heapdump endpoints.

 The /heapdump endpoint is perhaps the most difficult Actuator endpoint to
describe in any detail. Put succinctly, it downloads a gzip-compressed HPROF heap
dump file that can be used to track down memory or thread issues. For the sake of
space and because use of the heap dump is a rather advanced feature, I’m going to
limit coverage of the /heapdump endpoint to this paragraph.

TRACING HTTP ACTIVITY

The /httptrace endpoint reports details on the most recent 100 requests handled by
an application. Details included are the request method and path, a timestamp indi-
cating when the request was handled, headers from both the request and the response,
and the time taken handling the request.

 The following snippet of JSON code shows a single entry from the response of the
/httptrace endpoint:

{
 "traces": [
 {
 "timestamp": "2020-06-03T23:41:24.494Z",
 "principal": null,
 "session": null,
 "request": {
 "method": "GET",
 "uri": "http:/ /localhost:8080/ingredients",
 "headers": {
 "Host": ["localhost:8080"],
 "User-Agent": ["curl/7.54.0"],
 "Accept": ["*/*"]
 },
 "remoteAddress": null
 },

404 CHAPTER 15 Working with Spring Boot Actuator
 "response": {
 "status": 200,
 "headers": {
 "Content-Type": ["application/json;charset=UTF-8"]
 }
 },
 "timeTaken": 4
 },
...
]
}

Although this information may be useful for debugging purposes, it’s even more inter-
esting when the trace data is tracked over time, providing insight into how busy the
application was at any given time as well as how many requests were successful com-
pared to how many failed, based on the value of the response status. In chapter 16,
you’ll see how Spring Boot Admin captures this information into a running graph that
visualizes the HTTP trace information over a period of time.

MONITORING THREADS

In addition to HTTP request tracing, thread activity can also be useful in determining
what’s going on in a running application. The /threaddump endpoint produces a
snapshot of current thread activity. The following snippet from a /threaddump response
gives a taste of what this endpoint provides:

{
 "threadName": "reactor-http-nio-8",
 "threadId": 338,
 "blockedTime": -1,
 "blockedCount": 0,
 "waitedTime": -1,
 "waitedCount": 0,
 "lockName": null,
 "lockOwnerId": -1,
 "lockOwnerName": null,
 "inNative": true,
 "suspended": false,
 "threadState": "RUNNABLE",
 "stackTrace": [
 {
 "methodName": "kevent0",
 "fileName": "KQueueArrayWrapper.java",
 "lineNumber": -2,
 "className": "sun.nio.ch.KQueueArrayWrapper",
 "nativeMethod": true
 },
 {
 "methodName": "poll",
 "fileName": "KQueueArrayWrapper.java",
 "lineNumber": 198,
 "className": "sun.nio.ch.KQueueArrayWrapper",

405Consuming Actuator endpoints
 "nativeMethod": false
 },
...
],
 "lockedMonitors": [
 {
 "className": "io.netty.channel.nio.SelectedSelectionKeySet",
 "identityHashCode": 1039768944,
 "lockedStackDepth": 3,
 "lockedStackFrame": {
 "methodName": "lockAndDoSelect",
 "fileName": "SelectorImpl.java",
 "lineNumber": 86,
 "className": "sun.nio.ch.SelectorImpl",
 "nativeMethod": false
 }
 },
...
],
 "lockedSynchronizers": [],
 "lockInfo": null
}

The complete thread dump report includes every thread in the running application.
To save space, the thread dump here shows an abridged entry for a single thread. As
you can see, it includes details regarding the blocking and locking status of the
thread, among other thread specifics. There’s also a stack trace that gives some insight
into which area of the code the thread is spending time on.

 Because the /threaddump endpoint provides a snapshot of thread activity only at
the time it was requested, it can be difficult to get a full picture of how threads are
behaving over time. In chapter 16, you’ll see how Spring Boot Admin can monitor the
/threaddump endpoint in a live view.

15.2.4 Tapping runtime metrics

The /metrics endpoint can report many metrics produced by a running application,
including memory, processor, garbage collection, and HTTP requests. Actuator pro-
vides more than two dozen categories of metrics out of the box, as evidenced by the
following list of metrics categories returned when issuing a GET request to /metrics:

$ curl localhost:8080/actuator/metrics | jq
{
 "names": [
 "jvm.memory.max",
 "process.files.max",
 "jvm.gc.memory.promoted",
 "http.server.requests",
 "system.load.average.1m",
 "jvm.memory.used",
 "jvm.gc.max.data.size",
 "jvm.memory.committed",

406 CHAPTER 15 Working with Spring Boot Actuator
 "system.cpu.count",
 "logback.events",
 "jvm.buffer.memory.used",
 "jvm.threads.daemon",
 "system.cpu.usage",
 "jvm.gc.memory.allocated",
 "jvm.threads.live",
 "jvm.threads.peak",
 "process.uptime",
 "process.cpu.usage",
 "jvm.classes.loaded",
 "jvm.gc.pause",
 "jvm.classes.unloaded",
 "jvm.gc.live.data.size",
 "process.files.open",
 "jvm.buffer.count",
 "jvm.buffer.total.capacity",
 "process.start.time"
]
}

So many metrics are covered that it would be impossible to discuss them all in any
meaningful way in this chapter. Instead, let’s focus on one category of metrics,
http.server.requests, as an example of how to consume the /metrics endpoint.

 If instead of simply requesting /metrics, you were to issue a GET request for
/metrics/{metrics name}, you’d receive more detail about the metrics for that cate-
gory. In the case of http.server.requests, a GET request for /metrics/ http.server
.requests returns data that looks like the following:

$ curl localhost:8080/actuator/metrics/http.server.requests
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 2103 },
 { "statistic": "TOTAL_TIME", "value": 18.086334315 },
 { "statistic": "MAX", "value": 0.028926313 }
],
 "availableTags": [
 { "tag": "exception",
 "values": ["ResponseStatusException",
 "IllegalArgumentException", "none"] },
 { "tag": "method", "values": ["GET"] },
 { "tag": "uri",
 "values": [
 "/actuator/metrics/{requiredMetricName}",
 "/actuator/health", "/actuator/info", "/ingredients",
 "/actuator/metrics", "/**"] },
 { "tag": "status", "values": ["404", "500", "200"] }
]
}

The most significant portion of this response is the measurements section, which
includes all the metrics for the requested category. In this case, it reports that there

407Consuming Actuator endpoints
have been 2,103 HTTP requests. The total time spent handling those requests is
18.086334315 seconds, and the maximum time spent processing any request is
0.028926313 seconds.

 Those generic metrics are interesting, but you can narrow down the results further
by using the tags listed under availableTags. For example, you know that there have
been 2,103 requests, but what’s unknown is how many of them resulted in an HTTP
200 versus an HTTP 404 or HTTP 500 response status. Using the status tag, you can
get metrics for all requests resulting in an HTTP 404 status like this:

$ curl localhost:8080/actuator/metrics/http.server.requests? \
 tag=status:404
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 31 },
 { "statistic": "TOTAL_TIME", "value": 0.522061212 },
 { "statistic": "MAX", "value": 0 }
],
 "availableTags": [
 { "tag": "exception",
 "values": ["ResponseStatusException", "none"] },
 { "tag": "method", "values": ["GET"] },
 { "tag": "uri",
 "values": [
 "/actuator/metrics/{requiredMetricName}", "/**"] }
]
}

By specifying the tag name and value with the tag request attribute, you now see met-
rics specifically for requests that resulted in an HTTP 404 response. This shows that
there were 31 requests resulting in a 404, and it took 0.522061212 seconds to serve
them all. Moreover, it’s clear that some of the failing requests were GET requests for
/actuator/metrics/{requiredMetricsName} (although it’s unclear what the {required-
MetricsName} path variable resolved to). And some were for some other path, cap-
tured by the /** wildcard path.

 Hmmm . . . what if you want to know how many of those HTTP 404 responses were
for the /** path? All you need to do to filter this further is to specify the uri tag in the
request, like this:

% curl "localhost:8080/actuator/metrics/http.server.requests? \
 tag=status:404&tag=uri:/**"
{
 "name": "http.server.requests",
 "measurements": [
 { "statistic": "COUNT", "value": 30 },
 { "statistic": "TOTAL_TIME", "value": 0.519791548 },
 { "statistic": "MAX", "value": 0 }
],
 "availableTags": [
 { "tag": "exception", "values": ["ResponseStatusException"] },

408 CHAPTER 15 Working with Spring Boot Actuator
 { "tag": "method", "values": ["GET"] }
]
}

Now you can see that there were 30 requests for some path that matched /** that
resulted in an HTTP 404 response, and it took a total of 0.519791548 seconds to han-
dle those requests.

 You’ll also notice that as you refine the request, the available tags are more limited.
The tags offered are only those that match the requests captured by the displayed met-
rics. In this case, the exception and method tags each have only a single value; it’s
obvious that all 30 of the requests were GET requests that resulted in a 404 because of a
ResponseStatusException.

 Navigating the /metrics endpoint can be a tricky business, but with a little prac-
tice, it’s not impossible to get the data you’re looking for. In chapter 16, you’ll see
how Spring Boot Admin makes consuming data from the /metrics endpoint much
easier.

 Although the information presented by Actuator endpoints offers useful insight
into the inner workings of a running Spring Boot application, it’s not well suited for
human consumption. Because Actuator endpoints are REST endpoints, the data they
provide is intended for consumption by some other application, perhaps a UI. With
that in mind, let’s see how you can present Actuator information in a user-friendly
web application.

15.3 Customizing Actuator
One of the greatest features of Actuator is that it can be customized to meet the spe-
cific needs of an application. A few of the endpoints themselves allow for customiza-
tion. Meanwhile, Actuator itself allows you to create custom endpoints.

 Let’s look at a few ways that Actuator can be customized, starting with ways to add
information to the /info endpoint.

15.3.1 Contributing information to the /info endpoint

As you saw in section 15.2.1, the /info endpoint starts off empty and uninformative.
But you can easily add data to it by creating properties that are prefixed with info.

 Although prefixing properties with info. is a very easy way to get custom data into
the /info endpoint, it’s not the only way. Spring Boot offers an interface named Info-
Contributor that allows you to programmatically add any information you want to the
/info endpoint response. Spring Boot even comes ready with a couple of useful imple-
mentations of InfoContributor that you’ll no doubt find useful.

 Let’s see how you can write your own InfoContributor to add some custom info to
the /info endpoint.

CREATING A CUSTOM INFOCONTRIBUTOR

Suppose you want to add some simple statistics regarding Taco Cloud to the /info
endpoint. For example, let’s say you want to include information about how many

409Customizing Actuator
tacos have been created. To do that, you can write a class that implements Info-
Contributor, inject it with TacoRepository, and then publish whatever count that
TacoRepository gives you as information to the /info endpoint. The next listing
shows how you might implement such a contributor.

package tacos.actuator;

import java.util.HashMap;
import java.util.Map;

import org.springframework.boot.actuate.info.Info.Builder;
import org.springframework.boot.actuate.info.InfoContributor;
import org.springframework.stereotype.Component;

import tacos.data.TacoRepository;

@Component
public class TacoCountInfoContributor implements InfoContributor {
 private TacoRepository tacoRepo;

 public TacoCountInfoContributor(TacoRepository tacoRepo) {
 this.tacoRepo = tacoRepo;
 }

 @Override
 public void contribute(Builder builder) {
 long tacoCount = tacoRepo.count().block();
 Map<String, Object> tacoMap = new HashMap<String, Object>();
 tacoMap.put("count", tacoCount);
 builder.withDetail("taco-stats", tacoMap);
 }
}

By implementing InfoContributor, TacoCountInfoContributor is required to imple-
ment the contribute() method. This method is given a Builder object on which the
contribute() method makes a call to withDetail() to add info details. In your
implementation, you consult TacoRepository by calling its count() method to find
out how many tacos have been created. In this particular case, you’re working with a
reactive repository, so you need to call block() to get the count out of the returned
Mono<Long>. Then you put that count into a Map, which you then give to the builder
with the label taco-stats. The results of the /info endpoint will include that count,
as shown here:

{
 "taco-stats": {
 "count": 44
 }
}

Listing 15.3 A custom implementation of InfoContributor

410 CHAPTER 15 Working with Spring Boot Actuator
As you can see, an implementation of InfoContributor is able to use whatever means
necessary to contribute information. This is in contrast to simply prefixing a property
with info., which, although simple, is limited to static values.

INJECTING BUILD INFORMATION INTO THE /INFO ENDPOINT

Spring Boot comes with a few built-in implementations of InfoContributor that auto-
matically add information to the results of the /info endpoint. Among them is Build-
InfoContributor, which adds information from the project build file into the /info
endpoint results. The basic information includes the project version, the timestamp of
the build, and the host and user who performed the build.

 To enable build information to be included in the results of the /info endpoint,
add the build-info goal to the Spring Boot Maven Plugin executions, as follows:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>build-info</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

If you’re using Gradle to build your project, you can simply add the following lines to
your build.gradle file:

springBoot {
 buildInfo()
}

In either event, the build will produce a file named build-info.properties in the dis-
tributable JAR or WAR file that BuildInfoContributor will consume and contribute
to the /info endpoint. The following snippet from the /info endpoint response shows
the build information that’s contributed:

{
 "build": {
 "artifact": "tacocloud",
 "name": "taco-cloud",
 "time": "2021-08-08T23:55:16.379Z",
 "version": "0.0.15-SNAPSHOT",
 "group": "sia"
 },
}

411Customizing Actuator
This information is useful for understanding exactly which version of an application is
running and when it was built. By performing a GET request to the /info endpoint,
you’ll know whether you’re running the latest and greatest build of the project.

EXPOSING GIT COMMIT INFORMATION

Assuming that your project is kept in Git for source code control, you may want to
include Git commit information in the /info endpoint. To do that, you’ll need to add
the following plugin in the Maven project pom.xml:

<build>
 <plugins>
...
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 </plugin>
 </plugins>
</build>

If you’re a Gradle user, don’t worry. There’s an equivalent plugin for you to add to
your build.gradle file, shown here:

plugins {
 id "com.gorylenko.gradle-git-properties" version "2.3.1"
}

Both of these plugins do essentially the same thing: they generate a build-time artifact
named git.properties that contains all of the Git metadata for the project. A special
InfoContributor implementation discovers that file at runtime and exposes its con-
tents as part of the /info endpoint.

 Of course, to generate the git.properties file, the project needs to have Git commit
metadata. That is, it must be a clone of a Git repository or be a newly initialized local
Git repository with at least one commit. If not, then either of these plugins will fail.
You can, however, configure them to ignore the missing Git metadata. For the Maven
plugin, set the failOnNoGitDirectory property to false like this:

<build>
 <plugins>
...
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 <configuration>
 <failOnNoGitDirectory>false</failOnNoGitDirectory>
 </configuration>
 </plugin>
 </plugins>
</build>

412 CHAPTER 15 Working with Spring Boot Actuator
Similarly, you can set the failOnNoGitDirectory property in Gradle by specifying it
under gitProperties like this:

gitProperties {
 failOnNoGitDirectory = false
}

In its simplest form, the Git information presented in the /info endpoint includes the
Git branch, commit hash, and timestamp that the application was built against, as
shown here:

{
 "git": {
 "branch": "main",
 "commit": {
 "id": "df45505",
 "time": "2021-08-08T21:51:12Z"
 }
 },
...
}

This information is quite definitive in describing the state of the code when the proj-
ect was built. But by setting the management.info.git.mode property to full, you can
get extremely detailed information about the Git commit that was in play when the
project was built, as shown in the next code sample:

management:
 info:
 git:
 mode: full

The following listing shows a sample of what the full Git info might look like.

"git": {
 "local": {
 "branch": {
 "ahead": "8",
 "behind": "0"
 }
 },
 "commit": {
 "id": {
 "describe-short": "df45505-dirty",
 "abbrev": "df45505",
 "full": "df455055daaf3b1347b0ad1d9dca4ebbc6067810",
 "describe": "df45505-dirty"
 },
 "message": {
 "short": "Apply chapter 18 edits",

Listing 15.4 Full Git commit info exposed through the /info endpoint

413Customizing Actuator
 "full": "Apply chapter 18 edits"
 },
 "user": {
 "name": "Craig Walls",
 "email": "craig@habuma.com"
 },
 "author": {
 "time": "2021-08-08T15:51:12-0600"
 },
 "committer": {
 "time": "2021-08-08T15:51:12-0600"
 },
 "time": "2021-08-08T21:51:12Z"
 },
 "branch": "master",
 "build": {
 "time": "2021-08-09T00:13:37Z",
 "version": "0.0.15-SNAPSHOT",
 "host": "Craigs-MacBook-Pro.local",
 "user": {
 "name": "Craig Walls",
 "email": "craig@habuma.com"
 }
 },
 "tags": "",
 "total": {
 "commit": {
 "count": "196"
 }
 },
 "closest": {
 "tag": {
 "commit": {
 "count": ""
 },
 "name": ""
 }
 },
 "remote": {
 "origin": {
 "url": "git@github.com:habuma/spring-in-action-6-samples.git"
 }
 },
 "dirty": "true"
},

In addition to the timestamp and abbreviated Git commit hash, the full version
includes the name and email of the user who committed the code as well as the com-
mit message and other information, allowing you to pinpoint exactly what code was
used to build the project. In fact, notice that the dirty field in listing 15.4 is true,
indicating that some uncommitted changes existed in the build directory when the
project was built. It doesn’t get much more definitive than that!

414 CHAPTER 15 Working with Spring Boot Actuator
15.3.2 Defining custom health indicators

Spring Boot comes with several out-of-the-box health indicators that provide health
information for many common external systems that a Spring application may inte-
grate with. But at some point, you may find that you’re interacting with some external
system that Spring Boot neither anticipated nor provided a health indicator for.

 For instance, your application may integrate with a legacy mainframe application,
and the health of your application may be affected by the health of the legacy system.
To create a custom health indicator, all you need to do is create a bean that imple-
ments the HealthIndicator interface.

 As it turns out, the Taco Cloud services have no need for a custom health indicator,
because the ones provided by Spring Boot are more than sufficient. But to demon-
strate how you can develop a custom health indicator, consider the next listing, which
shows a simple implementation of HealthIndicator in which health is determined
somewhat randomly by the time of day.

package tacos.actuator;

import java.util.Calendar;
import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.stereotype.Component;

@Component
public class WackoHealthIndicator
 implements HealthIndicator {
 @Override
 public Health health() {
 int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);
 if (hour > 12) {
 return Health
 .outOfService()
 .withDetail("reason",
 "I'm out of service after lunchtime")
 .withDetail("hour", hour)
 .build();
 }

 if (Math.random() <= 0.1) {
 return Health
 .down()
 .withDetail("reason", "I break 10% of the time")
 .build();
 }
 return Health
 .up()
 .withDetail("reason", "All is good!")

Listing 15.5 An unusual implementation of HealthIndicator

415Customizing Actuator
 .build();
 }
}

This crazy health indicator first checks what the current time is, and if it’s after noon,
returns a health status of OUT_OF_SERVICE, with a few details explaining the reason for
that status. Even if it’s before lunch, there’s a 10% chance that the health indicator
will report a DOWN status, because it uses a random number to decide whether or not
it’s up. If the random number is less than 0.1, the status will be reported as DOWN. Oth-
erwise, the status will be UP.

 Obviously, the health indicator in listing 15.5 isn’t going to be very useful in any
real-world applications. But imagine that instead of consulting the current time or a
random number, it were to make a remote call to some external system and determine
the status based on the response it receives. In that case, it would be a very useful
health indicator.

15.3.3 Registering custom metrics

In section 15.2.4, we looked at how you could navigate the /metrics endpoint to con-
sume various metrics published by Actuator, with a focus on metrics pertaining to
HTTP requests. The metrics provided by Actuator are very useful, but the /metrics
endpoint isn’t limited to only those built-in metrics.

 Ultimately, Actuator metrics are implemented by Micrometer (https://micrometer
.io/), a vendor-neutral metrics facade that makes it possible for applications to publish
any metrics they want and to display them in the third-party monitoring system of their
choice, including support for Prometheus, Datadog, and New Relic, among others.

 The most basic means of publishing metrics with Micrometer is through Microme-
ter’s MeterRegistry. In a Spring Boot application, all you need to do to publish met-
rics is inject a MeterRegistry wherever you may need to publish counters, timers, or
gauges that capture the metrics for your application.

 As an example of publishing custom metrics, suppose you want to keep counters
for the numbers of tacos that have been created with different ingredients. That is,
you want to track how many tacos have been made with lettuce, ground beef, flour tor-
tillas, or any of the available ingredients. The TacoMetrics bean in the next listing
shows how you might use MeterRegistry to gather that information.

package tacos.actuator;

import java.util.List;
import org.springframework.data.rest.core.event.AbstractRepositoryEventListener;
import org.springframework.stereotype.Component;
import io.micrometer.core.instrument.MeterRegistry;
import tacos.Ingredient;
import tacos.Taco;

Listing 15.6 TacoMetrics registers metrics around taco ingredients

https://micrometer.io/
https://micrometer.io/
https://micrometer.io/

416 CHAPTER 15 Working with Spring Boot Actuator
@Component
public class TacoMetrics extends AbstractRepositoryEventListener<Taco> {
 private MeterRegistry meterRegistry;

 public TacoMetrics(MeterRegistry meterRegistry) {
 this.meterRegistry = meterRegistry;
 }

 @Override
 protected void onAfterCreate(Taco taco) {
 List<Ingredient> ingredients = taco.getIngredients();
 for (Ingredient ingredient : ingredients) {
 meterRegistry.counter("tacocloud",
 "ingredient", ingredient.getId()).increment();
 }
 }
}

As you can see, TacoMetrics is injected through its constructor with a MeterRegistry.
It also extends AbstractRepositoryEventListener, a Spring Data class that enables
the interception of repository events and overrides the onAfterCreate() method so
that it can be notified any time a new Taco object is saved.

 Within onAfterCreate(), a counter is declared for each ingredient where the tag
name is ingredient and the tag value is equal to the ingredient ID. If a counter with
that tag already exists, it will be reused. The counter is incremented, indicating that
another taco has been created for the ingredient.

 After a few tacos have been created, you can start querying the /metrics endpoint
for ingredient counts. A GET request to /metrics/tacocloud yields some unfiltered
metric counts, as shown next:

$ curl localhost:8080/actuator/metrics/tacocloud
{
 "name": "tacocloud",
 "measurements": [{ "statistic": "COUNT", "value": 84 }
],
 "availableTags": [
 {
 "tag": "ingredient",
 "values": ["FLTO", "CHED", "LETC", "GRBF",
 "COTO", "JACK", "TMTO", "SLSA"]
 }
]
}

The count value under measurements doesn’t mean much here, because it’s a sum
of all the counts for all ingredients. But let’s suppose you want to know how many
tacos have been created with flour tortillas (FLTO). All you need to do is specify the
ingredient tag with a value of FLTO as follows:

417Customizing Actuator
$ curl localhost:8080/actuator/metrics/tacocloud?tag=ingredient:FLTO

{
 "name": "tacocloud",
 "measurements": [
 { "statistic": "COUNT", "value": 39 }
],
 "availableTags": []
}

Now it’s clear that 39 tacos have had flour tortillas as one of their ingredients.

15.3.4 Creating custom endpoints

At first glance, you might think that Actuator’s endpoints are implemented as nothing
more than Spring MVC controllers. But as you’ll see in chapter 17, the endpoints are
also exposed as JMX MBeans as well as through HTTP requests. Therefore, there
must be something more to these endpoints than just a controller class.

 In fact, Actuator endpoints are defined quite differently from controllers. Instead
of a class that’s annotated with @Controller or @RestController, Actuator endpoints
are defined with classes that are annotated with @Endpoint.

 What’s more, instead of using HTTP-named annotations such as @GetMapping,
@PostMapping, or @DeleteMapping, Actuator endpoint operations are defined by
methods annotated with @ReadOperation, @WriteOperation, and @DeleteOperation.
These annotations don’t imply any specific communication mechanism and, in fact,
allow Actuator to communicate by any variety of communication mechanisms, HTTP,
and JMX out of the box. To demonstrate how to write a custom Actuator endpoint,
consider NotesEndpoint in the next listing.

package tacos.actuator;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import org.springframework.boot.actuate.endpoint.annotation.DeleteOperation;
import org.springframework.boot.actuate.endpoint.annotation.Endpoint;
import org.springframework.boot.actuate.endpoint.annotation.ReadOperation;
import org.springframework.boot.actuate.endpoint.annotation.WriteOperation;
import org.springframework.stereotype.Component;

@Component
@Endpoint(id="notes", enableByDefault=true)
public class NotesEndpoint {

 private List<Note> notes = new ArrayList<>();

 @ReadOperation
 public List<Note> notes() {

Listing 15.7 A custom endpoint for taking notes

418 CHAPTER 15 Working with Spring Boot Actuator
 return notes;
 }

 @WriteOperation
 public List<Note> addNote(String text) {
 notes.add(new Note(text));
 return notes;
 }

 @DeleteOperation
 public List<Note> deleteNote(int index) {
 if (index < notes.size()) {
 notes.remove(index);
 }
 return notes;
 }

 class Note {
 private Date time = new Date();
 private final String text;

 public Note(String text) {
 this.text = text;
 }

 public Date getTime() {
 return time;
 }

 public String getText() {
 return text;
 }
 }
}

This endpoint is a simple note-taking endpoint, wherein one can submit a note with a
write operation, read the list of notes with a read operation, and remove a note with the
delete operation. Admittedly, this endpoint isn’t very useful as far as Actuator endpoints
go. But when you consider that the out-of-the-box Actuator endpoints cover so much
ground, it’s difficult to come up with a practical example of a custom Actuator endpoint.

 At any rate, the NotesEndpoint class is annotated with @Component so that it will be
picked up by Spring’s component scanning and instantiated as a bean in the Spring
application context. But more relevant to this discussion, it’s also annotated with
@Endpoint, making it an Actuator endpoint with an ID of notes. And it’s enabled by
default so that you won’t need to explicitly enable it by including it in the manage-
ment.web.endpoints.web.exposure.include configuration property.

 As you can see, NotesEndpoint offers one of each kind of operation:

 The notes() method is annotated with @ReadOperation. When invoked, it will
return a list of available notes. In HTTP terms, this means it will handle an
HTTP GET request for /actuator/notes and respond with a JSON list of notes.

419Customizing Actuator
 The addNote() method is annotated with @WriteOperation. When invoked, it
will create a new note from the given text and add it to the list. In HTTP terms,
it handles a POST request where the body of the request is a JSON object with a
text property. It finishes by responding with the current state of the notes list.

 The deleteNote() method is annotated with @DeleteOperation. When invoked,
it will delete the note at the given index. In HTTP terms, this endpoint handles
DELETE requests where the index is given as a request parameter.

To see this in action, you can use curl to poke about with this new endpoint. First, add
a couple of notes, using two separate POST requests, as shown here:

$ curl localhost:8080/actuator/notes \
 -d'{"text":"Bring home milk"}' \
 -H"Content-type: application/json"
[{"time":"2020-06-08T13:50:45.085+0000","text":"Bring home milk"}]

$ curl localhost:8080/actuator/notes \
 -d'{"text":"Take dry cleaning"}' \
 -H"Content-type: application/json"
[{"time":"2021-07-03T12:39:13.058+0000","text":"Bring home milk"},
 {"time":"2021-07-03T12:39:16.012+0000","text":"Take dry cleaning"}]

As you can see, each time a new note is posted, the endpoint responds with the newly
appended list of notes. But if later you want to view the list of notes, you can do a sim-
ple GET request like so:

$ curl localhost:8080/actuator/notes
[{"time":"2021-07-03T12:39:13.058+0000","text":"Bring home milk"},
 {"time":"2021-07-03T12:39:16.012+0000","text":"Take dry cleaning"}]

If you decide to remove one of the notes, a DELETE request with an index request
parameter, shown next, should do the trick:

$ curl localhost:8080/actuator/notes?index=1 -X DELETE
[{"time":"2021-07-03T12:39:13.058+0000","text":"Bring home milk"}]

It’s important to note that although I’ve shown only how to interact with the end-
point using HTTP, it will also be exposed as an MBean that can be accessed using
whatever JMX client you choose. But if you want to limit it to only exposing an
HTTP endpoint, you can annotate the endpoint class with @WebEndpoint instead of
@Endpoint as follows:

@Component
@WebEndpoint(id="notes", enableByDefault=true)
public class NotesEndpoint {
 ...
}

Likewise, if you prefer an MBean-only endpoint, annotate the class with @JmxEndpoint.

420 CHAPTER 15 Working with Spring Boot Actuator
15.4 Securing Actuator
The information presented by Actuator is probably not something that you would
want prying eyes to see. Moreover, because Actuator provides a few operations that let
you change environment properties and logging levels, it’s probably a good idea to
secure Actuator so that only clients with proper access will be allowed to consume its
endpoints.

 Even though it’s important to secure Actuator, security is outside of Actuator’s
responsibilities. Instead, you’ll need to use Spring Security to secure Actuator. And
because Actuator endpoints are just paths in the application like any other path in
the application, there’s nothing unique about securing Actuator versus any other
application path. Everything we discussed in chapter 5 applies when securing Actua-
tor endpoints.

 Because all Actuator endpoints are gathered under a common base path of /actu-
ator (or possibly some other base path if the management.endpoints.web.base-path
property is set), it’s easy to apply authorization rules to all Actuator endpoints across
the board. For example, to require that a user have ROLE_ADMIN authority to invoke
Actuator endpoints, you might override the configure() method of WebSecurity-
ConfigurerAdapter like this:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/actuator/**").hasRole("ADMIN")

 .and()

 .httpBasic();
}

This requires that all requests be from an authenticated user with ROLE_ADMIN author-
ity. It also configures HTTP basic authentication so that client applications can submit
encoded authentication information in their request Authorization headers.

 The only real problem with securing Actuator this way is that the path to the end-
points is hardcoded as /actuator/**. If this were to change because of a change to the
management.endpoints.web.base-path property, it would no longer work. To help
with this, Spring Boot also provides EndpointRequest—a request matcher class that
makes this even easier and less dependent on a given String path. Using Endpoint-
Request, you can apply the same security requirements for Actuator endpoints with-
out hardcoding the /actuator/** path, as shown here:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(EndpointRequest.toAnyEndpoint())
 .authorizeRequests()

421Summary
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

The EndpointRequest.toAnyEndpoint() method returns a request matcher that
matches any Actuator endpoint. If you’d like to exclude some of the endpoints from
the request matcher, you can call excluding(), specifying them by name as follows:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(
 EndpointRequest.toAnyEndpoint()
 .excluding("health", "info"))
 .authorizeRequests()
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

On the other hand, should you wish to apply security to only a handful of Actuator
endpoints, you can specify those endpoints by name by calling to() instead of toAny-
Endpoint(), like this:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .requestMatcher(EndpointRequest.to(
 "beans", "threaddump", "loggers"))
 .authorizeRequests()
 .anyRequest().hasRole("ADMIN")
 .and()
 .httpBasic();
}

This limits Actuator security to only the /beans, /threaddump, and /loggers end-
points. All other Actuator endpoints are left wide open.

Summary
 Spring Boot Actuator provides several endpoints, both as HTTP and JMX

MBeans, that let you peek into the inner workings of a Spring Boot application.
 Most Actuator endpoints are disabled by default but can be selectively exposed

by setting management.endpoints.web.exposure.include and management
.endpoints.web.exposure.exclude.

 Some endpoints, such as the /loggers and /env endpoints, allow for write oper-
ations to change a running application’s configuration on the fly.

 Details regarding an application’s build and Git commit can be exposed in the
/info endpoint.

422 CHAPTER 15 Working with Spring Boot Actuator
 An application’s health can be influenced by a custom health indicator, track-
ing the health of an externally integrated application.

 Custom application metrics can be registered through Micrometer, which
affords Spring Boot applications instant integration with several popular met-
rics engines such as Datadog, New Relic, and Prometheus.

 Actuator web endpoints can be secured using Spring Security, much like any
other endpoint in a Spring application.

Administering Spring
A picture is worth a thousand words (or so they say), and for many application
users, a user-friendly web application is worth a thousand API calls. Don’t get me
wrong, I’m a command-line junkie and a big fan of using curl and HTTPie to con-
sume REST APIs. But sometimes, manually typing the command line to invoke a
REST endpoint and then visually inspecting the results can be less efficient than
simply clicking a link and reading the results in a web browser.

 In the previous chapter, we explored all of the HTTP endpoints exposed by the
Spring Boot Actuator. As HTTP endpoints that return JSON responses, there’s no
limit to how those can be used. In this chapter, we’ll see how to put a frontend user
interface (UI) on top of the Actuator to make it easier to use, as well as capture live
data that would be difficult to consume from Actuator directly.

This chapter covers
 Setting up Spring Boot Admin

 Registering client applications

 Working with Actuator endpoints

 Securing the Admin server
423

424 CHAPTER 16 Administering Spring
16.1 Using Spring Boot Admin
I’ve been asked several times if it’d make sense and, if so, how hard it’d be to develop
a web application that consumes Actuator endpoints and serves them up in an easy-to-
view UI. I respond that it’s just a REST API, and, therefore, anything is possible. But
why bother creating your own UI for the Actuator when the good folks at codecentric
AG (https://www.codecentric.de/), a software and consulting company based in Ger-
many, have already done the work for you?

 Spring Boot Admin is an administrative frontend web application that makes Actu-
ator endpoints more consumable by humans. It’s split into two primary components:
the Spring Boot Admin server and its clients. The Admin server collects and displays
Actuator data that’s fed to it from one or more Spring Boot applications, which are
identified as Spring Boot Admin clients, as illustrated in figure 16.1.

You’ll need to register each of your applications with the Spring Boot Admin server,
including the Taco Cloud application. But first, you’ll set up the Spring Boot Admin
server to receive each client’s Actuator information.

16.1.1 Creating an Admin server

To enable the Admin server, you’ll first need to create a new Spring Boot application
and add the Admin server dependency to the project’s build. The Admin server is gen-
erally used as a standalone application, separate from any other application. Therefore,
the easiest way to get started is to use the Spring Boot Initializr to create a new Spring
Boot project and select the check box labeled Spring Boot Admin (Server). This results
in the following dependency being included in the <dependencies> block:

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-starter-server</artifactId>
</dependency>

Spring Boot

application

(Admin client)

Presents as a web UI Consumes Actuator endpointsSpring Boot

Admin server

Spring Boot

application

(Admin client)

Spring Boot

application

(Admin client)Consumes

or en

Actuat
dpoints

Consumes Actuator endpoints

Figure 16.1 The Spring Boot Admin server consumes Actuator endpoints from one or more Spring Boot
applications and presents the data in a web-based UI.

https://www.codecentric.de/

425Using Spring Boot Admin
Next, you’ll need to enable the Admin server by annotating the main configuration
class with @EnableAdminServer as shown here:

package tacos.admin;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import de.codecentric.boot.admin.server.config.EnableAdminServer;

@EnableAdminServer
@SpringBootApplication
public class AdminServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(AdminServerApplication.class, args);
 }

}

Finally, because the Admin server won’t be the only application running locally as it’s
developed, you should set it to listen in on a unique port, but one you can easily access
(not port 0, for example). Here, I’ve chosen port 9090 as the port for the Spring Boot
Admin server:

server:
 port: 9090

Now your Admin server is ready. If you were to fire it up at this point and navigate to
http:/ /localhost:9090 in your web browser, you’d see something like what’s shown in
figure 16.2.

Figure 16.2 A newly created server displayed in the Spring Boot Admin UI. No applications are registered yet.

426 CHAPTER 16 Administering Spring
As you can see, the Spring Boot Admin shows that zero instances of zero applications
are all up. But that’s meaningless information when you consider the message below
those counts that states No Applications Registered. For the Admin server to be use-
ful, you’ll need to register some applications with it.

16.1.2 Registering Admin clients

Because the Admin server is an application separate from other Spring Boot applica-
tion(s) for which it presents Actuator data, you must somehow make the Admin server
aware of the applications it should display. Two ways to register Spring Boot Admin cli-
ents with the Admin server follow:

 Each application explicitly registers itself with the Admin server.
 The Admin server discovers applications through the Eureka service registry.

We’ll focus on how to configure individual Boot applications as Spring Boot Admin
clients so that they can register themselves with the Admin server. For more informa-
tion about working with Eureka, see the Spring Cloud documentation at https://docs
.spring.io/spring-cloud-netflix/docs/current/reference/html/ or Spring Microservices
in Action, 2nd Edition, by John Carnell and Illary Huaylupo Sánchez.

 For a Spring Boot application to register itself as a client of the Admin server, you
must include the Spring Boot Admin client starter in its build. You can easily add this
dependency to your build by selecting the check box labeled Spring Boot Admin (Cli-
ent) in the Initializr, or you can set the following <dependency> for a Maven-built
Spring Boot application:

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-starter-client</artifactId>
</dependency>

With the client-side library in place, you’ll also need to configure the location of the
Admin server so that the client can register itself. To do that, you’ll set the spring
.boot.admin.client.url property to the root URL of the Admin server like so:

spring:
 boot:
 admin:
 client:
 url: http:/ /localhost:9090

Notice that the spring.application.name property is also set. This property is used
by several Spring projects to identify an application. In this case, it is the name that
will be given to the Admin server to use as a label anywhere information about the
application appears in the Admin server.

https://docs.spring.io/spring-cloud-netflix/docs/current/reference/html/
https://docs.spring.io/spring-cloud-netflix/docs/current/reference/html/
https://docs.spring.io/spring-cloud-netflix/docs/current/reference/html/

427Exploring the Admin server
 Although there isn’t much information about the Taco Cloud application shown
in figure 16.3, it does show the application’s uptime, whether the Spring Boot Maven
plugin has the build-info goal configured (as we discussed in section 15.3.1), and
the build version. Rest assured that you’ll see plenty of other runtime details after you
click the application in the Admin server.

Now that you have the Taco Cloud application registered with the Admin server, let’s
see what the Admin server has to offer.

16.2 Exploring the Admin server
Once you’ve registered all of the Spring Boot applications as Admin server clients, the
Admin server makes a wealth of information available for seeing what’s going on
inside each application, including the following:

 General health and information
 Any metrics published through Micrometer and the /metrics endpoint
 Environment properties
 Logging levels for packages and classes

In fact, almost anything that the Actuator exposes can be viewed in the Admin server,
albeit in a much more human-friendly format. This includes graphs and filters to help
distill the information. The amount of information presented in the Admin server is
far richer than the space we’ll have in this chapter to cover it in detail. But let me use
the rest of this section to share a few of the highlights of the Admin server.

Figure 16.3 The Spring Boot Admin UI displays a single registered application.

428 CHAPTER 16 Administering Spring
16.2.1 Viewing general application health and information

As discussed in section 15, some of the most basic information provided by the Actua-
tor is health and general application information via the /health and /info endpoints.
The Admin server displays that information under the Details menu item as shown in
figure 16.4.

If you scroll past the Health and Info sections in the Details screen, you’ll find useful
statistics from the application’s JVM, including graphs displaying memory, thread, and
processor usage (see figure 16.5).

 The information displayed in the graphs, as well as the metrics under Processes
and Garbage Collection Pauses, can provide useful insights into how your application
uses JVM resources.

16.2.2 Watching key metrics

The information presented by the /metrics endpoint is perhaps the least human-
readable of all of the Actuator’s endpoints. But the Admin server makes it easy for us
mere mortals to consume the metrics produced in an application with its UI under
the Metrics menu item.

Figure 16.4 The Details screen of the Spring Boot Admin UI displays general health and information about an
application.

429Exploring the Admin server
Initially, the Metrics screen doesn’t display any metrics whatsoever. But the form at the
top lets you set up one or more watches on any metrics you want to keep an eye on.

 In figure 16.6, I’ve set up two watches on metrics under the http.server.requests
category. The first reports metrics anytime an HTTP GET request is received and the
return status is 200 (OK). The second reports metrics for any request that results in an
HTTP 404 (NOT FOUND) response.

 What’s nice about these metrics (and, in fact, almost anything displayed in the
Admin server) is that they show live data—they’ll automatically update without the
need to refresh the page.

16.2.3 Examining environment properties

The Actuator’s /env endpoint returns all environment properties available to a Spring
Boot application from all of its property sources. And although the JSON response
from the endpoint isn’t all that difficult to read, the Admin server presents it in a
much more aesthetically pleasing form under the Environment menu item, shown in
figure 16.7.

 Because there can be hundreds of properties, you can filter the list of available
properties by either property name or value. Figure 16.7 shows properties filtered by
those whose name and/or values contain the text "spring.". The Admin server also

Figure 16.5 As you scroll down on the Details screen, you can view additional JVM internal information, including
processor, thread, and memory statistics.

430 CHAPTER 16 Administering Spring
Figure 16.6 On the Metrics screen, you can set up watches on any metrics published through the
application’s /metrics endpoint.

Figure 16.7 The Environment screen displays environment properties and includes options to override and
filter those values.

431Securing the Admin server
allows you to set or override environment properties using the form under the Envi-
ronment Manager header.

16.2.4 Viewing and setting logging levels

The Actuator’s /loggers endpoint is helpful in understanding and overriding logging
levels in a running application. The Admin server’s Loggers screen adds an easy-to-use
UI on top of the /loggers endpoint to make simple work of managing logging in an
application. Figure 16.8 shows the list of loggers filtered by the name org.springframe-
work.boot.

By default, the Admin server displays logging levels for all packages and classes. Those
can be filtered by name (for classes only) and/or logging levels that are explicitly con-
figured versus inherited from the root logger.

16.3 Securing the Admin server
As we discussed in the previous chapter, the information exposed by the Actuator’s
endpoints isn’t intended for general consumption. They contain information that
exposes details about an application that only an application administrator should

Figure 16.8 The Loggers screen displays logging levels for packages and classes in the application and lets you
override those levels.

432 CHAPTER 16 Administering Spring
see. Moreover, some of the endpoints allow changes that certainly shouldn’t be exposed
to just anyone.

 Just as security is important to the Actuator, it’s also important to the Admin server.
What’s more, if the Actuator endpoints require authentication, then the Admin server
needs to know the credentials to be able to access those endpoints. Let’s see how to
add a little security to the Admin server. We’ll start by requiring authentication.

16.3.1 Enabling login in the Admin server

It’s probably a good idea to add security to the Admin server because it’s not secured
by default. Because the Admin server is a Spring Boot application, you can secure it
using Spring Security just like you would any other Spring Boot application. And just
as you would with any application secured by Spring Security, you’re free to decide
which security scheme fits your needs best.

 At a minimum, you can add the Spring Boot security starter to the Admin server’s
build by checking the Security checkbox in the Initializr or by adding the following
<dependency> to the project’s pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Then, so that you don’t have to keep looking at the Admin server’s logs for the ran-
domly generated password, you can configure a simple administrative username and
password in application.yml like so:

spring:
 security:
 user:
 name: admin
 password: 53cr3t

Now when the Admin server is loaded in the browser, you’ll be prompted for a user-
name and password with Spring Security’s default login form. As in the code snippet,
entering admin and 53cr3t will get you in.

 By default, Spring Security will enable CSRF on the Spring Boot Admin server,
which will prevent client applications from registering with the Admin Server. There-
fore, we will need a small bit of security configuration to disable CSRF, as shown here:

package tacos.admin;

import org.springframework.context.annotation.Bean;
import org.springframework.security.config.annotation.web.reactive

.EnableWebFluxSecurity;
import org.springframework.security.config.web.server.ServerHttpSecurity;
import org.springframework.security.web.server.SecurityWebFilterChain;

433Securing the Admin server
@EnableWebFluxSecurity
public class SecurityConfig {

 @Bean
 public SecurityWebFilterChain filterChain(ServerHttpSecurity http) throws

Exception {
 return http
 .csrf()
 .disable()
 .build();
 }

}

Of course, this security configuration is extremely basic. I recommend that you con-
sult chapter 5 for ways of configuring Spring Security for a richer security scheme
around the Admin server.

16.3.2 Authenticating with the Actuator

In section 15.4, we discussed how to secure Actuator endpoints with HTTP Basic
authentication. By doing so, you’ll be able to keep out everyone who doesn’t know the
username and password you assigned to the Actuator endpoints. Unfortunately, that
also means that the Admin server won’t be able to consume Actuator endpoints unless
it provides the username and password. But how will the Admin server get those cre-
dentials?

 If the application registers directly with the Admin server, then it can send its cre-
dentials to the server at registration time. You’ll need to configure a few properties to
enable that.

 The spring.boot.admin.client.username and spring.boot.admin.client.pass-
word properties specify the credentials that the Admin server can use to access an
application’s Actuator endpoints. The following snippet from application.yml shows
how you might set those properties:

spring:
 boot:
 admin:
 client:
 url: http:/ /localhost:9090
 username: admin
 password: 53cr3t

The username and password properties must be set in each application that registers
itself with the Admin server. The values given must match the username and password
that’s required in an HTTP Basic authentication header to the Actuator endpoints. In
this example, they’re set to admin and password, which are the credentials configured
to access the Actuator endpoints.

434 CHAPTER 16 Administering Spring
Summary
 The Spring Boot Admin server consumes the Actuator endpoints from one or

more Spring Boot applications and presents the data in a user-friendly web
application.

 Spring Boot applications can either register themselves as clients to the Admin
server or the Admin server can discover them through Eureka.

 Unlike the Actuator endpoints that capture a snapshot of an application’s state,
the Admin server is able to display a live view into the inner workings of an
application.

 The Admin server makes it easy to filter Actuator results and, in some cases, dis-
play data visually in a graph.

 Because it’s a Spring Boot application, the Admin server can be secured by any
means available through Spring Security.

Monitoring Spring
with JMX
For over a decade and a half, Java Management Extensions (JMX) has been the
standard means of monitoring and managing Java applications. By exposing man-
aged components known as MBeans (managed beans), an external JMX client can
manage an application by invoking operations, inspecting properties, and monitor-
ing events from MBeans.

 We’ll start exploring Spring and JMX by looking at how Actuator endpoints are
exposed as MBeans.

17.1 Working with Actuator MBeans
By default, all Actuator endpoints are exposed as MBeans. But, starting with Spring
Boot 2.2, JMX itself is disabled by default. To enable JMX in your Spring Boot appli-
cation, you can set spring.jmx.enabled to true. In application.yml, this would
look like this:

This chapter covers
 Working with Actuator endpoint MBeans

 Exposing Spring beans as MBeans

 Publishing notifications
435

436 CHAPTER 17 Monitoring Spring with JMX
spring:
 jmx:
 enabled: true

With that property set, Spring support for JMX is enabled. And with it, the Actuator
endpoints are all exposed as MBeans. You can use any JMX client you wish to connect
with Actuator endpoint MBeans. Using JConsole, which comes with the Java Develop-
ment Kit, you’ll find Actuator MBeans listed under the org.springframework.boot
domain, as shown in figure 17.1.

One thing that’s nice about Actuator MBean endpoints is that they’re all exposed by
default. There’s no need to explicitly include any of them, as you had to do with
HTTP. You can, however, choose to narrow down the choices by setting management
.endpoints.jmx.exposure.include and management.endpoints.jmx.exposure

.exclude. For example, to limit Actuator endpoint MBeans to only the /health,

Figure 17.1 Actuator endpoints are automatically exposed as JMX MBeans.

437Creating your own MBeans
/info, /bean, and /conditions endpoints, set management.endpoints.jmx.exposure
.include like this:

management:
 endpoints:
 jmx:
 exposure:
 include: health,info,bean,conditions

Or, if there are only a few you want to exclude, you can set management.end-
points.jmx.exposure.exclude like this:

management:
 endpoints:
 jmx:
 exposure:
 exclude: env,metrics

Here, you use management.endpoints.jmx.exposure.exclude to exclude the /env
and /metrics endpoints. All other Actuator endpoints will still be exposed as MBeans.

 To invoke the managed operations on one of the Actuator MBeans in JConsole,
expand the endpoint MBean in the left-hand tree, and then select the desired opera-
tion under Operations.

 For example, if you’d like to inspect the logging levels for the tacos.ingredients
package, expand the Loggers MBean and click on the operation named logger-
Levels, as shown in figure 17.2. In the form at the top right, fill in the Name field with
the package name (org.springframework.web, for example), and then click the
loggerLevels button.

 After you click the loggerLevels button, a dialog box will pop up, showing you the
response from the /loggers endpoint MBean. It might look a little like figure 17.3.

 Although the JConsole UI is a bit clumsy to work with, you should be able to get
the hang of it and use it to explore any Actuator endpoint in much the same way. If
you don’t like JConsole, that’s fine—there are plenty of other JMX clients to
choose from.

17.2 Creating your own MBeans
Spring makes it easy to expose any bean you want as a JMX MBean. All you must do is
annotate the bean class with @ManagedResource and then annotate any methods or
properties with @ManagedOperation or @ManagedAttribute. Spring will take care of
the rest.

 For example, suppose you want to provide an MBean that tracks how many tacos
have been ordered through Taco Cloud. You can define a service bean that keeps a
running count of how many tacos have been created. The following listing shows what
such a service might look like.

438 CHAPTER 17 Monitoring Spring with JMX
package tacos.jmx;

import java.util.concurrent.atomic.AtomicLong;
import org.springframework.data.rest.core.event.AbstractRepositoryEventListener;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;

Listing 17.1 An MBean that counts how many tacos have been created

Figure 17.2 Using JConsole to display logging levels from a Spring Boot application

Figure 17.3 Logging levels from the
/loggers endpoint MBean displayed in
JConsole

439Creating your own MBeans
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Service;
import tacos.Taco;
import tacos.data.TacoRepository;

@Service
@ManagedResource
public class TacoCounter
 extends AbstractRepositoryEventListener<Taco> {

 private AtomicLong counter;
 public TacoCounter(TacoRepository tacoRepo) {
 tacoRepo
 .count()
 .subscribe(initialCount -> {
 this.counter = new AtomicLong(initialCount);
 });
 }

 @Override
 protected void onAfterCreate(Taco entity) {
 counter.incrementAndGet();
 }

 @ManagedAttribute
 public long getTacoCount() {
 return counter.get();
 }

 @ManagedOperation
 public long increment(long delta) {
 return counter.addAndGet(delta);
 }

}

The TacoCounter class is annotated with @Service so that it will be picked up by com-
ponent scanning and an instance will be registered as a bean in the Spring application
context. But it’s also annotated with @ManagedResource to indicate that this bean
should also be an MBean. As an MBean, it will expose one attribute and one opera-
tion. The getTacoCount() method is annotated with @ManagedAttribute so that it
will be exposed as an MBean attribute, whereas the increment() method is annotated
with @ManagedOperation, exposing it as an MBean operation. Figure 17.4 shows how
the TacoCounter MBean appears in JConsole.

 TacoCounter has another trick up its sleeve, although it has nothing to do with
JMX. Because it extends AbstractRepositoryEventListener, it will be notified of any
persistence events when a Taco is saved through TacoRepository. In this particular
case, the onAfterCreate() method will be invoked anytime a new Taco object is cre-
ated and saved, and it will increment the counter by one. But AbstractRepository-
EventListener also offers several methods for handling events both before and after
objects are created, saved, or deleted.

440 CHAPTER 17 Monitoring Spring with JMX
Working with MBean operations and attributes is largely a pull operation. That is,
even if the value of an MBean attribute changes, you won’t know until you view the
attribute through a JMX client. Let’s turn the tables and see how you can push notifi-
cations from an MBean to a JMX client.

17.3 Sending notifications
MBeans can push notifications to interested JMX clients with Spring’s Notification-
Publisher. NotificationPublisher has a single sendNotification() method that,
when given a Notification object, publishes the notification to any JMX clients that
have subscribed to the MBean.

 For an MBean to be able to publish notifications, it must implement the
NotificationPublisherAware interface, which requires that a setNotification-
Publisher() method be implemented. For example, suppose you want to publish a
notification for every 100 tacos that are created. You can change the TacoCounter
class so that it implements NotificationPublisherAware and uses the injected
NotificationPublisher to send notifications for every 100 tacos that are created.

Figure 17.4 TacoCounter’s operations and attributes as seen in JConsole

441Sending notifications
The following listing shows the changes that must be made to TacoCounter to enable
such notifications.

package tacos.jmx;

import java.util.concurrent.atomic.AtomicLong;
import org.springframework.data.rest.core.event.AbstractRepositoryEventListener;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Service;

import org.springframework.jmx.export.notification.NotificationPublisher;
import org.springframework.jmx.export.notification.NotificationPublisherAware;
import javax.management.Notification;

import tacos.Taco;
import tacos.data.TacoRepository;

@Service
@ManagedResource
public class TacoCounter
 extends AbstractRepositoryEventListener<Taco>
 implements NotificationPublisherAware {

 private AtomicLong counter;
 private NotificationPublisher np;

 @Override
 public void setNotificationPublisher(NotificationPublisher np) {
 this.np = np;
 }

 ...

 @ManagedOperation
 public long increment(long delta) {
 long before = counter.get();
 long after = counter.addAndGet(delta);
 if ((after / 100) > (before / 100)) {
 Notification notification = new Notification(
 "taco.count", this,
 before, after + "th taco created!");
 np.sendNotification(notification);
 }
 return after;
 }

}

In the JMX client, you’ll need to subscribe to the TacoCounter MBean to receive noti-
fications. Then, as tacos are created, the client will receive notifications for each cen-
tury count. Figure 17.5 shows how the notifications may appear in JConsole.

Listing 17.2 Sending notifications for every 100 tacos

442 CHAPTER 17 Monitoring Spring with JMX
Notifications are a great way for an application to actively send data and alerts to a
monitoring client without requiring the client to poll managed attributes or invoke
managed operations.

Summary
 Most Actuator endpoints are available as MBeans that can be consumed using

any JMX client.
 Spring automatically enables JMX for monitoring beans in the Spring applica-

tion context.
 Spring beans can be exposed as MBeans by annotating them with @Managed-

Resource. Their methods and properties can be exposed as managed opera-
tions and attributes by annotating the bean class with @ManagedOperation and
@ManagedAttribute.

 Spring beans can publish notifications to JMX clients using Notification-
Publisher.

Figure 17.5 JConsole, subscribed to the TacoCounter MBean, receives a notification for every 100 tacos that
are created.

Deploying Spring
Think of your favorite action movie. Now imagine going to see that movie in the
theater and being taken on a thrilling audiovisual ride with high-speed chases,
explosions, and battles, only to have it come to a sudden halt before the good guys
take down the bad guys. Instead of seeing the movie’s conflict resolved, when the
theater lights come on, everyone is ushered out the door. Although the lead-up was
exciting, it’s the climax of the movie that’s important. Without it, it’s action for
action’s sake.

 Now imagine developing applications and putting a lot of effort and creativity
into solving the business problem, but then never deploying the application for
others to use and enjoy. Sure, most applications we write don’t involve car chases or
explosions (at least I hope not), but there’s a certain rush you get along the way.
Not every line of code you write is destined for production, but it’d be a big let-
down if none of it ever was deployed.

This chapter covers
 Building Spring applications as either WAR or

JAR files

 Building Spring applications as container images

 Deploying Spring applications in Kubernetes
443

444 CHAPTER 18 Deploying Spring
 Up to this point, we’ve focused on using the features of Spring Boot that help us
develop an application. There have been some exciting steps along the way, but it’s all
for nothing if you don’t cross the finish line and deploy the application.

 In this chapter, we’re going to step beyond developing applications with Spring
Boot and look at how to deploy those applications. Although this may seem obvious
for anyone who has ever deployed a Java-based application, Spring Boot and related
Spring projects have some features you can draw on that make deploying Spring Boot
applications unique.

 In fact, unlike most Java web applications, which are typically deployed to an appli-
cation server as WAR files, Spring Boot offers several deployment options. Before we
look at how to deploy a Spring Boot application, let’s consider all the options and
choose a few that suit your needs best.

18.1 Weighing deployment options
You can build and run Spring Boot applications in several ways, including the following:

 Running the application directly in the IDE with either Spring Tool Suite or
IntelliJ IDEA

 Running the application from the command line using the Maven spring-
boot:run goal or Gradle bootRun task

 Using Maven or Gradle to produce an executable JAR file that can be run at the
command line or be deployed in the cloud

 Using Maven or Gradle to produce a WAR file that can be deployed to a tradi-
tional Java application server

 Using Maven or Gradle to produce a container image that can be deployed any-
where that containers are supported, including Kubernetes environments.

Any of these choices is suitable for running the application while you’re still develop-
ing it. But what about when you’re ready to deploy the application into a production
or other nondevelopment environment?

 Although running an application from the IDE or via Maven or Gradle isn’t con-
sidered a production-ready option, executable JAR files and traditional Java WAR
files are certainly valid options for deploying applications to a production environ-
ment. Given the options of deploying a WAR file, a JAR file, or a container image,
how do you choose? In general, the choice comes down to whether you plan to
deploy your application to a traditional Java application server or a cloud platform,
as described here:

 Deploying to a Platform as a Service (PaaS) cloud—If you’re planning to deploy
your application to a PaaS cloud platform such as Cloud Foundry (https://
www.cloudfoundry.org/), then an executable JAR file is a fine choice. Even if
the cloud platform supports WAR deployment, the JAR file format is much
simpler than the WAR format, which is designed for application server
deployment.

https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/

445Building executable JAR files
 Deploying to Java application servers—If you must deploy your application to Tom-
cat, WebSphere, WebLogic, or any other traditional Java application server, you
really have no choice but to build your application as a WAR file.

 Deploying to Kubernetes—Modern cloud platforms are increasingly based on
Kubernetes (https://kubernetes.io/). When deploying to Kubernetes, which is
itself a container-orchestration system, the obvious choice is to build your appli-
cation into a container image.

In this chapter, we’ll focus on the following three deployment scenarios:

 Building a Spring Boot application as an executable JAR file, which can possibly
be pushed to a PaaS platform

 Deploying a Spring Boot application as a WAR file to a Java application server
such as Tomcat

 Packaging a Spring Boot application as a Docker container image for deploy-
ment to any platform that supports Docker deployments

To get started, let’s take a look at what is perhaps the most common way of building a
Spring Boot application: as an executable JAR file.

18.2 Building executable JAR files
Building a Spring application into an executable JAR file is rather straightforward.
Assuming that you chose JAR packaging when initializing your project, then you
should be able to produce an executable JAR file with the following Maven command:

$ mvnw package

After a successful build, the resulting JAR file will be placed into the target directory
with a name and version based on the <artifactId> and <version> entries in the
project’s pom.xml file (e.g., tacocloud-0.0.19-SNAPSHOT.jar).

 Or, if you’re using Gradle, then this will do the trick:

$ gradlew build

For Gradle builds, the resulting JAR will be found in the build/libs directory. The
name of the JAR file will be based on the rootProject.name property in the settings
.gradle file along with the version property in build.gradle.

 Once you have the executable JAR file, you can run it with java -jar like this:

$ java -jar tacocloud-0.0.19-SNAPSHOT.jar

The application will run and, assuming it is a web application, start up an embedded
server (Netty or Tomcat, depending on whether or not the project is a reactive web proj-
ect) and start listening for requests on the configured server.port (8080 by default).

 That’s great for running the application locally. But how can you deploy an execut-
able JAR file?

https://kubernetes.io/

446 CHAPTER 18 Deploying Spring
 That really depends on where you’ll be deploying the application. But if you are
deploying to a Cloud Foundry foundation, you can push the JAR file using the cf
command-line tool as follows:

$ cf push tacocloud -p target/tacocloud-0.0.19-SNAPSHOT.jar

The first argument to cf push is the name given to the application in Cloud Foundry.
This name is used to reference the application in Cloud Foundry and the cf CLI, as
well as used as a subdomain at which the application is hosted. For example, if the
application domain for your Cloud Foundry foundation is cf.myorg.com, then the
Taco Cloud application will be available at https://tacocloud.cf.myorg.com.

 Another way to deploy executable JAR files is to package them in a Docker con-
tainer and run them in Docker or Kubernetes. Let’s see how to do that next.

18.3 Building container images
Docker (https://www.docker.com/) has become the de facto standard for distributing
applications of all kinds for deployment in the cloud. Many different cloud environ-
ments, including AWS, Microsoft Azure, and Google Cloud Platform (to name a few)
accept Docker containers for deploying applications.

 The idea of containerized applications, such as those created with Docker, draws
analogies from real-world intermodal containers that are used to ship items all over
the world. Intermodal containers all have a standard size and format, regardless of
their contents. Because of that, intermodal containers are easily stacked on ships, car-
ried on trains, or pulled by trucks. In a similar way, containerized applications share a
common container format that can be deployed and run anywhere, regardless of the
application inside.

 The most basic way to create an image from your Spring Boot application is to use
the docker build command and a Dockerfile that copies the executable JAR file from
the project build into the container image. The following extremely simple Dockerfile
does exactly that:

FROM openjdk:11.0.12-jre
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

The Dockerfile describes how the container image will be created. Because it’s so
brief, let’s examine this Dockerfile line by line:

 Line 1—Declares that the image we create will be based on a predefined con-
tainer image that provides (among other things) the Open JDK 11 Java runtime.

 Line 2—Creates a variable that references all JAR files in the project’s target/
directory. For most Maven builds, there should be only one JAR file in there. By
using a wildcard, however, we decouple the Dockerfile definition from the JAR

https://tacocloud.cf.myorg.com
https://www.docker.com/

447Building container images
file’s name and version. The path to the JAR file assumes that the Dockerfile is
in the root of the Maven project.

 Line 3—Copies the JAR file from the project’s target/ directory into the con-
tainer image with a generic name of app.jar.

 Line 4—Defines an entry point—that is, defines a command to run when a con-
tainer created from this image starts—to run the JAR file with java -jar /app.jar.

With this Dockerfile in hand, you can create the image using the Docker command-
line tool like this:

$ docker build . -t habuma/tacocloud:0.0.19-SNAPSHOT

The . in this command references the relative path to the location of the Dockerfile.
If you are running docker build from a different path, replace the . with the path to
the Dockerfile (without the filename). For example, if you are running docker build
from the parent of the project, you will use docker build like this:

$ docker build tacocloud -t habuma/tacocloud:0.0.19-SNAPSHOT

The value given after the -t argument is the image tag, which is made up of a name
and version. In this case, the image name is habuma/tacocloud and the version is
0.0.19-SNAPSHOT. If you’d like to try it out, you can use docker run to run this newly
created image:

$ docker run -p8080:8080 habuma/tacocloud:0.0.19-SNAPSHOT

The -p8080:8080 forwards requests to port 8080 on the host machine (e.g., your
machine where you’re running Docker) to the container’s port 8080 (where Tomcat
or Netty is listening for requests).

 While building a Docker image this way is easy enough if you already have an exe-
cutable JAR file handy, it’s not the easiest way to create an image from a Spring Boot
application. Beginning with Spring Boot 2.3.0, you can build container images with-
out adding any special dependencies or configuration files, or editing your project in
any way. That’s because the Spring Boot build plugins for both Maven and Gradle sup-
port the building of container images directly. To build your Maven-built Spring proj-
ect into a container image, you use the build-image goal from the Spring Boot Maven
plugin like this:

$ mvnw spring-boot:build-image

Likewise, a Gradle-built project can be built into a container image like this:

$ gradlew bootBuildImage

This builds an image with a default tag based on the <artifactId> and <version>
properties in the pom.xml file. For the Taco Cloud application, this will be something

448 CHAPTER 18 Deploying Spring
like library/tacocloud:0.0.19-SNAPSHOT. We’ll see in a moment how to specify a cus-
tom image tag.

 Spring Boot’s build plugins rely on Docker to create images. Therefore, you’ll
need to have the Docker runtime installed on the machine building the image. But
once the image has been created, you can run it like this:

$ docker run -p8080:8080 library/tacocloud:0.0.19-SNAPSHOT

This runs the image and exposes the image’s port 8080 (which the embedded Tomcat
or Netty server is listening on) to the host machine’s port 8080.

 The default format of the tag is docker.io/library/ ${project.artifactId}:${proj-
ect.version}, which explains why the tag began with “library.” That’s fine if you’ll only
ever be running the image locally. But you’ll most likely want to push the image to an
image registry such as DockerHub and will need the image to be built with a tag that
references your image repository’s name.

 For example, suppose that your organization’s repository name in DockerHub is
tacocloud. In that case, you’ll want the image name to be tacocloud/tacocloud:0.0.19-
SNAPSHOT, effectively replacing the “library” default prefix with “tacocloud.” To
make that happen, you just need to specify a build property when building the image.
For Maven, you’ll specify the image name using the spring-boot.build-image.image-
Name JVM system property like this:

$ mvnw spring-boot:build-image \
 -Dspring-boot.build-image.imageName=tacocloud/tacocloud:0.0.19-SNAPSHOT

For a Gradle-built project, it’s slightly simpler. You specify the image name using an
--imageName parameter like this:

$ gradlew bootBuildImage --imageName=tacocloud/tacocloud:0.0.19-SNAPSHOT

Either of these ways of specifying the image name requires you to remember to do
them when building the image and requires that you not make a mistake. To make
things even easier, you can specify the image name as part of the build itself.

 In Maven, you specify the image name as a configuration entry in the Spring Boot
Maven Plugin. For example, the following snippet from the project’s pom.xml file
shows how to specify the image name as a <configuration> block:

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 
 </configuration>
</plugin>

449Building container images
Notice, that rather than hardcoding the artifact ID and version, we can leverage build
variables to make those values reference what is already specified elsewhere in the
build. This removes any need to manually bump the version number in the image name
as a project evolves. For a Gradle-built project, the following entry in build.gradle
achieves the same effect:

bootBuildImage {
 imageName = "habuma/${rootProject.name}:${version}"
}

With this configuration in place in the project build specification, you can build the
image at the command line without specifying the image name, as we did earlier. At
this point, you can run the image with docker run as before (referencing the image by
its new name) or you can use docker push to push the image to an image registry such
as DockerHub, as shown here:

$ docker push habuma/tacocloud:0.0.19-SNAPSHOT

Once the image is in an image registry, it can be pulled and run from any environ-
ment that has access to that registry. An increasingly common place to run images is in
Kubernetes. Let’s take a look at how to run an image in Kubernetes.

18.3.1 Deploying to Kubernetes

Kubernetes is an amazing container-orchestration platform that runs images, handles
scaling containers up and down as necessary, and reconciles broken containers for
increased robustness, among many other things.

 Kubernetes is a powerful platform on which to deploy applications—so powerful,
in fact, that there’s no way we’ll be able to cover it in detail in this chapter. Instead,
we’ll focus solely on the tasks required to deploy a Spring Boot application, built into
a container image, into a Kubernetes cluster. For a more detailed understanding of
Kubernetes, check out Kubernetes in Action, 2nd Edition, by Marko Lukša.

 Kubernetes has earned a reputation of being difficult to use (perhaps unfairly),
but deploying a Spring application that has been built as a container image in
Kubernetes is really easy and is worth the effort given all of the benefits afforded by
Kubernetes.

 You’ll need a Kubernetes environment into which to deploy your application. Sev-
eral options are available, including Amazon’s AWS EKS and the Google Kubernetes
Engine (GKE). For experimentation locally, you can also run Kubernetes clusters
using a variety of Kubernetes implementations such as MiniKube (https://minikube
.sigs.k8s.io/docs/), MicroK8s (https://microk8s.io/), and my personal favorite, Kind
(https://kind.sigs.k8s.io/).

 The first thing you’ll need to do is create a deployment manifest. The deployment
manifest is a YAML file that describes how an image should be deployed. As a simple

https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://microk8s.io/
https://kind.sigs.k8s.io/

450 CHAPTER 18 Deploying Spring
example, consider the following deployment manifest that deploys the Taco Cloud
image created earlier in a Kubernetes cluster:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: taco-cloud-deploy
 labels:
 app: taco-cloud
spec:
 replicas: 3
 selector:
 matchLabels:
 app: taco-cloud
 template:
 metadata:
 labels:
 app: taco-cloud
 spec:
 containers:
 - name: taco-cloud-container
 image: tacocloud/tacocloud:latest

This manifest can be named anything you like. But for the sake of discussion, let’s
assume you named it deploy.yaml and placed it in a directory named k8s at the root of
the project.

 Without diving into the details of how a Kubernetes deployment specification works,
the key things to notice here are that our deployment is named taco-cloud-deploy and
(near the bottom) is set to deploy and start a container based on the image whose
name is tacocloud/tacocloud:latest. By giving “latest” as the version rather than
“0.0.19-SNAPSHOT,” we can know that the very latest image pushed to the container
registry will be used.

 Another thing to notice is that the replicas property is set to 3. This tells the
Kubernetes runtime that there should be three instances of the container running. If,
for any reason, one of those three instances fails, then Kubernetes will automatically
reconcile the problem by starting a new instance in its place. To apply the deploy-
ment, you can use the kubectl command-line tool like this:

$ kubectl apply -f deploy.yaml

After a moment or so, you should be able to use kubectl get all to see the deploy-
ment in action, including three pods, each one running a container instance. Here’s a
sample of what you might see:

$ kubectl get all
NAME READY STATUS RESTARTS AGE
pod/taco-cloud-deploy-555bd8fdb4-dln45 1/1 Running 0 20s
pod/taco-cloud-deploy-555bd8fdb4-n455b 1/1 Running 0 20s
pod/taco-cloud-deploy-555bd8fdb4-xp756 1/1 Running 0 20s

451Building container images
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/taco-cloud-deploy 3/3 3 3 20s

NAME DESIRED CURRENT READY AGE
replicaset.apps/taco-cloud-deploy-555bd8fdb4 3 3 3 20s

The first section shows three pods, one for each instance we requested in the replicas
property. The middle section is the deployment resource itself. And the final section is
a ReplicaSet resource, a special resource that Kubernetes uses to remember how
many replicas of the application should be maintained.

 If you want to try out the application, you’ll need to expose a port from one of the
pods on your machine. To do that, the kubectl port-forward command, shown next,
comes in handy:

$ kubectl port-forward pod/taco-cloud-deploy-555bd8fdb4-dln45 8080:8080

In this case, I’ve chosen the first of the three pods listed from kubectl get all and
asked to forward requests from the host machine’s (the machine on which the Kuber-
netes cluster is running) port 8080 to the pod’s port 8080. With that in place, you
should be able to point your browser at http:/ /localhost:8080 to see the Taco Cloud
application running on the specified pod.

18.3.2 Enabling graceful shutdown

We have several ways in which to make Spring applications Kubernetes friendly, but
the two most essential things you’ll want to do are to enable graceful shutdown as well
as liveness and readiness probes.

 At any time, Kubernetes may decide to shut down one or more of the pods that
your application is running in. That may be because it senses a problem, or it might
be because someone has explicitly requested that the pod be shut down or restarted.
Whatever the reason, if the application on that pod is in the process of handling a
request, it’s poor form for the pod to immediately shut down, leaving the request
unhandled. Doing so will result in an error response to the client and require that the
client make the request again.

 Instead of burdening the client with an error, you can enable graceful shutdown in
your Spring application by simply setting the server.shutdown property to "graceful".
This can be done in any of the property sources discussed in chapter 6, including in
application.yml like this:

server:
 shutdown: graceful

By enabling graceful shutdown, Spring will hold off on allowing the application to
shut down for up to 30 seconds, allowing any in-progress requests to be handled. After
all pending requests have been completed or the shutdown time-out expires, the
application will be allowed to shut down.

452 CHAPTER 18 Deploying Spring
 The shutdown time-out is 30 seconds by default, but you can override that by set-
ting the spring.lifecycle.timeout-per-shutdown-phase property. For example, to
change the time-out to 20 seconds, you would set the property like this:

spring:
 lifecycle.timeout-per-shutdown-phase: 20s

While the shutdown is pending, the embedded server will stop accepting new requests.
This allows for all in-flight requests to be drained before shutdown occurs.

 Shutdown isn’t the only time when the application may not be able to handle
requests. During startup, for example, an application may need a moment to be pre-
pared to handle traffic. One of the ways that a Spring application can indicate to
Kubernetes that it isn’t ready to handle traffic is with a readiness probe. Next up, we’ll
take a look at how to enable liveness and readiness probes in a Spring application.

18.3.3 Working with application liveness and readiness

As we saw in chapter 15, the Actuator’s health endpoint provides a status on the
health of an application. But that health is only in relation to the health of any exter-
nal dependencies that the application relies on, such as a database or message broker.
Even if an application is perfectly healthy with regard to its database connection, that
doesn’t necessarily mean that it’s ready to handle requests or that it is even healthy
enough to remain running in its current state.

 Kubernetes supports the notion of liveness and readiness probes: indicators of an
application’s health that help Kubernetes determine whether traffic should be sent to
the application, or if the application should be restarted to resolve some issue. Spring
Boot supports liveness and readiness probes via the Actuator health endpoint as sub-
sets of the health endpoint known as health groups.

 Liveness is an indicator of whether an application is healthy enough to continue
running without being restarted. If an application indicates that its liveness indicator
is down, then the Kubernetes runtime can react to that by terminating the pod that
the application is running in and starting a new one in its place.

 Readiness, on the other hand, tells Kubernetes whether the application is ready to
handle traffic. During startup, for instance, an application may need to perform some
initialization before it can start handling requests. During this time, the application’s
readiness may show that it’s down. During this time, the application is still alive, so
Kubernetes won’t restart it. But Kubernetes will honor the readiness indicator by not
sending requests to the application. Once the application has completed initializa-
tion, it can set the readiness probe to indicate that it is up, and Kubernetes will be able
to route traffic to it.

ENABLING LIVENESS AND READINESS PROBES

To enable liveness and readiness probes in your Spring Boot application, you must set
management.health.probes.enabled to true. In an application.yml file, that will look
like this:

453Building container images
management:
 health:
 probes:
 enabled: true

Once the probes are enabled, a request to the Actuator health endpoint will look
something like this (assuming that the application is perfectly healthy):

{
 "status": "UP",
 "groups": [
 "liveness",
 "readiness"
]
}

On its own, the base health endpoint doesn’t tell us much about the liveness or readi-
ness of an application. But a request to /actuator/health/liveness or /actuator/
health/readiness will provide the liveness and readiness state of the application. In
either case, an up status will look like this:

{
 "status": "UP"
}

On the other hand, if either readiness or liveness is down, then the result will look like
this:

{
 "status": "DOWN"
}

In the case of a down readiness status, Kubernetes will not direct traffic to the applica-
tion. If the liveness endpoint indicates a down status, then Kubernetes will attempt to
remedy the situation by deleting the pod and starting a new instance in its place.

CONFIGURING LIVENESS AND READINESS PROBES IN THE DEPLOYMENT

With the Actuator producing liveness and readiness status on these two endpoints, all
we need to do now is tell Kubernetes about them in the deployment manifest. The tail
end of the following deployment manifest shows the configuration necessary to let
Kubernetes know how to check on liveness and readiness:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: taco-cloud-deploy
 labels:
 app: taco-cloud
spec:
 replicas: 3

454 CHAPTER 18 Deploying Spring
 selector:
 matchLabels:
 app: taco-cloud
 template:
 metadata:
 labels:
 app: taco-cloud
 spec:
 containers:
 - name: taco-cloud-container
 image: tacocloud/tacocloud:latest
 livenessProbe:
 initialDelaySeconds: 2
 periodSeconds: 5
 httpGet:
 path: /actuator/health/liveness
 port: 8080
 readinessProbe:
 initialDelaySeconds: 2
 periodSeconds: 5
 httpGet:
 path: /actuator/health/readiness
 port: 8080

This tells Kubernetes, for each probe, to make a GET request to the given path on port
8080 to get the liveness or readiness status. As configured here, the first request
should happen 2 seconds after the application pod is running and every 5 seconds
thereafter.

MANAGING LIVENESS AND READINESS

How do the liveness and readiness statuses get set? Internally, Spring itself or some
library that the application depends on can set the statuses by publishing an availabil-
ity change event. But that ability isn’t limited to Spring and its libraries; you can also
write code in your application that publishes these events.

 For example, suppose that you want to delay the readiness of your application until
some initialization has taken place. Early on in the application lifecycle, perhaps in an
ApplicationRunner or CommandLineRunner bean, you can publish a readiness state to
refuse traffic like this:

@Bean
public ApplicationRunner disableLiveness(ApplicationContext context) {
 return args -> {
 AvailabilityChangeEvent.publish(context,

ReadinessState.REFUSING_TRAFFIC);
 };
}

Here, the ApplicationRunner is given an instance of the Spring application context
as a parameter to the @Bean method. This is necessary because the static publish()

455Building and deploying WAR files
method needs it to publish the event. Once initialization is complete, the applica-
tion’s readiness state can be updated to accept traffic in a similar way, as shown next:

AvailabilityChangeEvent.publish(context, ReadinessState.ACCEPTING_TRAFFIC);

Liveness status can be updated in very much the same way. The key difference is
that instead of publishing ReadinessState.ACCEPTING_TRAFFIC or ReadinessState
.REFUSING_TRAFFIC, you’ll publish LivenessState.CORRECT or LivenessState

.BROKEN. For example, if in your application code you detect an unrecoverable fatal
error, your application can request that it be killed and restarted by publishing
Liveness.BROKEN like this:

AvailabilityChangeEvent.publish(context, LivenessState.BROKEN);

Shortly after this event is published, the liveness endpoint will indicate that the appli-
cation is down, and Kubernetes will take action by restarting the application. This
gives you very little time to publish a LivenessState.CORRECT event. But if you deter-
mine that, in fact, the application is healthy after all, then you can undo the broken
event by publishing a new event like this:

AvailabilityChangeEvent.publish(context, LivenessState.CORRECT);

As long as Kubernetes hasn’t hit your liveness endpoint since you set the status to bro-
ken, your application can chalk this up as a close call and keep serving requests.

18.4 Building and deploying WAR files
Throughout the course of this book, as you’ve developed the applications that make
up the Taco Cloud application, you’ve run them either in the IDE or from the com-
mand line as an executable JAR file. In either case, an embedded Tomcat server (or
Netty, in the case of Spring WebFlux applications) has always been there to serve
requests to the application.

 Thanks in large part to Spring Boot autoconfiguration, you’ve been spared from hav-
ing to create a web.xml file or servlet initializer class to declare Spring’s Dispatcher-
Servlet for Spring MVC. But if you’re going to deploy the application to a Java
application server, you’re going to need to build a WAR file. And, so that the application
server will know how to run the application, you’ll also need to include a servlet initial-
izer in that WAR file to play the part of a web.xml file and declare DispatcherServlet.

 As it turns out, building a Spring Boot application into a WAR file isn’t all that dif-
ficult. In fact, if you chose the WAR option when creating the application through the
Initializr, then there’s nothing more you need to do.

 The Initializr ensures that the generated project will contain a servlet initializer
class, and the build file will be geared to produce a WAR file. If, however, you chose to
build a JAR file from the Initializr (or if you’re curious as to what the pertinent differ-
ences are), then read on.

456 CHAPTER 18 Deploying Spring
 First, you’ll need a way to configure Spring’s DispatcherServlet. Although this
could be done with a web.xml file, Spring Boot makes this even easier with Spring-
BootServletInitializr. SpringBootServletInitializer is a special Spring Boot–
aware implementation of Spring’s WebApplicationInitializer. Aside from configur-
ing Spring’s DispatcherServlet, SpringBootServletInitializer also looks for any
beans in the Spring application context that are of type Filter, Servlet, or Servlet-
ContextInitializer and binds them to the servlet container.

 To use SpringBootServletInitializer, create a subclass and override the
configure() method to specify the Spring configuration class. The next code listing
shows TacoCloudServletInitializer, a subclass of SpringBootServletInitializer
that you’ll use for the Taco Cloud application.

package tacos;

import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.boot.context.web.SpringBootServletInitializer;

public class TacoCloudServletInitializer
 extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure(
 SpringApplicationBuilder builder) {
 return builder.sources(TacoCloudApplication.class);
 }
}

As you can see, the configure() method is given a SpringApplicationBuilder as a
parameter and returns it as a result. In between, it calls the sources() method that
registers Spring configuration classes. In this case, it registers only the TacoCloud-
Application class, which serves the dual purpose of a bootstrap class (for executable
JARs) and a Spring configuration class.

 Even though the application has other Spring configuration classes, it’s not neces-
sary to register them all with the sources() method. The TacoCloudApplication
class, annotated with @SpringBootApplication, implicitly enables component scan-
ning. Component scanning discovers and pulls in any other configuration classes that
it finds.

 For the most part, SpringBootServletInitializer’s subclass is boilerplate. It ref-
erences the application’s main configuration class. But aside from that, it’ll be the
same for every application where you’ll be building a WAR file. And you’ll almost
never need to make any changes to it.

 Now that you’ve written a servlet initializer class, you must make a few small changes
to the project build. If you’re building with Maven, the change required is as simple as
ensuring that the <packaging> element in pom.xml is set to war, as shown here:

<packaging>war</packaging>

Listing 18.1 Enabling Spring web applications via Java

457Summary
The changes required for a Gradle build are similarly straightforward. You must apply
the war plugin in the build.gradle file as follows:

apply plugin: 'war'

Now you’re ready to build the application. With Maven, you’ll use the Maven wrapper
script that the Initializr used to execute the package goal like so:

$ mvnw package

If the build is successful, then the WAR file can be found in the target directory. On
the other hand, if you were using Gradle to build the project, you’d use the Gradle
wrapper to execute the build task as follows:

$ gradlew build

Once the build completes, the WAR file will be in the build/libs directory. All that’s
left is to deploy the application. The deployment procedure varies across application
servers, so consult the documentation for your application server’s specific deploy-
ment procedure.

 It may be interesting to note that although you’ve built a WAR file suitable for
deployment to any Servlet 3.0 (or higher) servlet container, the WAR file can still be
executed at the command line as if it were an executable JAR file as follows:

$ java -jar target/taco-cloud-0.0.19-SNAPSHOT.war

In effect, you get two deployment options out of a single deployment artifact!

18.5 The end is where we begin
Over the past several hundred pages, we’ve gone from a simple start—or start.spring.io,
more specifically—to deploying an application in the cloud. I hope that you’ve had as
much fun working through these pages as I’ve had writing them.

 But while this book must come to an end, your Spring adventure is just beginning.
Using what you’ve learned in these pages, go build something amazing with Spring. I
can’t wait to see what you come up with!

Summary
 Spring applications can be deployed in a number of different environments,

including traditional application servers and PaaS environments like Cloud
Foundry, or as Docker containers.

 Building as an executable JAR file allows a Spring Boot application to be
deployed to several cloud platforms without the overhead of a WAR file.

458 CHAPTER 18 Deploying Spring
 When building a WAR file, you should include a class that subclasses Spring-
BootServletInitializr to ensure that Spring’s DispatcherServlet is prop-
erly configured.

 Containerizing Spring applications is as simple as using the Spring Boot build
plugin’s support for building images. These images can then be deployed any-
where Docker containers can be deployed, including in Kubernetes clusters.

appendix
Bootstrapping

Spring applications

You can kick-start your Spring projects in a lot of ways, and which you choose is
largely a matter of personal taste. Many of the choices will be decided by which IDE
is your favorite.

 All but one of these options are based on the Spring Initializr, which is a REST
API that generates Spring Boot projects for you. The various IDE choices are noth-
ing more than clients for that REST API. Additionally, you have a few ways to use
the Spring Initializr API outside of your IDE. This appendix takes a quick look at all
of these options.

A.1 Initializing a project with Spring Tool Suite
To initialize a new Spring project with Spring Tool Suite, choose the Spring Starter
Project menu option from the File > New menu, as shown in figure A.1.

NOTE This is an abbreviated description of using Spring Tool Suite to ini-
tialize a Spring project. For a more detailed explanation, see section 1.2.1.

You’ll be shown the first page of the project creation dialog box (figure A.2). On this
page, you’ll define basic project information, such as the project’s name, coordinates

Figure A.1 Starting a new project in Spring Tool Suite
459

460 APPENDIX Bootstrapping Spring applications
(group ID and artifact ID), version, and base package name. You can also specify
whether the project will be built with Maven or Gradle, whether the build will produce
a JAR file or a WAR file, which version of Java to build with, and even an alternate JVM
language to use, such as Groovy or Kotlin.

Figure A.2 Defining basic project information

461Initializing a project with Spring Tool Suite
 The first field on this page asks you to specify the location of the Spring Initializr
service. If you’re running or using a custom instance of the Initializr, you’ll want to
specify the base URL of the Initializr service here. Otherwise, you’ll be fine leaving it
with the default that points to http://start.spring.io.

 After you’ve defined the basic project information, click Next to see the project
dependencies page (see figure A.3).

Figure A.3 Specifying project dependencies

http://start.spring.io

462 APPENDIX Bootstrapping Spring applications
On the project dependencies page, you can specify all of the dependencies your proj-
ect will need. Many of these dependencies are Spring Boot Starter dependencies,
although some other dependencies are commonly used in Spring projects.

 The available dependencies are listed on the left side, organized in groups that can
be expanded or collapsed. If you’re having trouble finding a dependency, you can
also search for dependencies to narrow down your choices.

 To add a dependency to the generated project, select the check box next to the
dependency name. Your selections will appear in the list on the right side under the
Selected header. You can remove a dependency by clicking the X next to the selected
dependency, or click Clear Selection to remove all selected dependencies.

 As an added convenience, if you find that you have a certain core set of dependen-
cies that you always (or often) use for your projects, you can click the Make Default
button after selecting those dependencies, and they’ll already be selected the next
time you create a project.

 After making your selections, click Finish to generate the project and add it to your
workspace. If, however, you want to use an Initializr other than the one at http://
start.spring.io, click Next to set the Initializr base URL, as shown in figure A.4.

The Base Url field specifies the URL where the Initializr API is listening. This is the
only field you can change on this page. The Full Url field shows the complete URL
that will be used to request a new project from the Initializr.

Figure A.4 Optionally specifying the Initializr base URL

http://start.spring.io
http://start.spring.io

463Initializing a project with IntelliJ IDEA
A.2 Initializing a project with IntelliJ IDEA
To get started on a new Spring project in IntelliJ IDEA, choose the Project menu item
from the File > New menu, as shown in figure A.5.

This opens up the first page of a new Spring Initializr project wizard. You’ll be pre-
sented with a page that asks for essential project information, as shown in figure A.6.

Figure A.5 Starting a new Spring project in IntelliJ IDEA

Figure A.6 Specifying essential project information in IntelliJ IDEA

464 APPENDIX Bootstrapping Spring applications
You may recognize some of the fields on this page as information that might appear in
a Maven pom.xml file—in fact, if you select Maven Project from the Type field, that’s
exactly how it will be used. You’re welcome to choose Gradle Project instead if Gradle
is your preference.

 Once you’ve filled in the essential project information, click Next to be shown the
project dependencies page (see figure A.7).

The dependencies are organized by category in the far-left list. Selecting a category
will result in that category’s options being presented in the middle list. Your selected
dependencies will be listed (according to category) in the right list.

 After all of your dependencies have been selected, click Finish. Your project will be
created and loaded into the IntelliJ IDEA workspace.

Figure A.7 Selecting project dependencies

465Initializing a project with NetBeans
A.3 Initializing a project with NetBeans
Before you can create a new Spring Boot project in NetBeans, you need to install a
plugin that enables Spring Boot development in NetBeans. The NB Spring Boot
plugin adds features to NetBeans that are similar to those built into Spring ToolSuite
and IntelliJ IDEA.

 To install the plugin, select the Plugins option from the Tools menu, as shown in
figure A.8.

You’ll be shown a list of available plugins for NetBeans, including the NB Spring Boot
plugin, as shown in figure A.9.

Figure A.8 The NetBeans Plugins menu item

Figure A.9 Selecting the NB Spring Boot plugin

466 APPENDIX Bootstrapping Spring applications
Click Install to begin the installation of the Spring Boot plugin. You’ll be prompted
with a handful of dialogs to confirm your decision and to acknowledge the plugin
license agreement. Simply click Next through them all until you get to the last one,
then click Install. Finally, you’ll be prompted to restart NetBeans for the plugin to
take effect.

 After installing the Spring Boot plugin, you are ready to initialize a new Spring
Boot project in NetBeans. To create a new Spring project in NetBeans, start by select-
ing the New Project menu item under the File menu, as shown in figure A.10.

You’ll be shown the first page of the new project wizard. As shown in figure A.11, this
page will let you choose what kind of project you want to create.

 For a Spring Boot project, select Java with Maven from the category list on the left,
and then select Spring Boot Initializr Project from the project list on the right. Then
click Next to move to the next page.

 The second page in the new project wizard (figure A.12) lets you set essential proj-
ect information, such as the project name, version, and other information that will
ultimately be used to define the project in a Maven pom.xml file.

Figure A.10 Starting a new Spring
project in NetBeans

467Initializing a project with NetBeans
Figure A.11 Creating a new Spring Boot Initializr project

Figure A.12 Specifying essential project information

468 APPENDIX Bootstrapping Spring applications
After you’ve specified the basic project information, click Next to navigate to the
dependencies page in the new project wizard, shown in figure A.13.

Dependencies are all listed as check boxes in the same list, organized by category. If
you have trouble finding the specific dependency you need, you can use the Filter text
box at the top to limit the list of options.

 You can also specify which version of Spring Boot you wish to use on this page. It
will be set to the current generally available version of Spring Boot by default.

 Once you’ve selected the dependencies for your project, click Next to navigate to
the last page of the new project wizard, shown in figure A.14. This page lets you specify
some final details about the project, including the project name and location on the
filesystem. (The Project Folder field is read only and derived from the other two
fields.) It also gives you the option to run and debug your project through the Maven
Spring Boot plugin instead of through NetBeans. You may also choose to have Net-
Beans remove the Maven wrapper from the generated project.

Figure A.13 Selecting project dependencies

469Initializing a project at start.spring.io
Once you’ve set the final bit of project information, click Finish to generate the proj-
ect and have it added to your NetBeans workspace.

A.4 Initializing a project at start.spring.io
Although one of the IDE-based initialization options described thus far will likely suit
your needs, it’s possible that you may use a completely different IDE, or you might
favor working with a simpler text editor. In that case, you can still take advantage of
the Spring Initializr using the Initializr web-based interface.

 To get started, direct your favorite web browser to https://start.spring.io. You
should see the simple version of the Spring Initializr web user interface, shown in
figure A.15.

Figure A.14 Specifying the project’s name and location

https://start.spring.io

470 APPENDIX Bootstrapping Spring applications
In the simple version of the Initializr web application, you’re asked for some very basic
information, including whether you want to build with Maven or Gradle, which lan-
guage you want to develop the project with, which version of Spring Boot to build
against, and the group and artifact IDs of the project.

 You’ll also have the option of specifying dependencies by typing search criteria in
the search box. For example, as shown in figure A.16, you can type web to search for
any dependencies where “web” is a keyword.

Figure A.15 The simple version of the Spring Initializr web interface

471Initializing a project at start.spring.io
When you see the dependency you want, press Return on your keyboard to select it,
and it will be added to the list of selected dependencies. The boxes beneath Selected
Dependencies in figure A.17 show that the Web, Thymeleaf, DevTools, and Lombok
dependencies have been selected.

 If you decide you don’t need a selected dependency, you can click the X to the
right of the dependency entry to remove it. When you’re finished, you can click
Generate Project (or use the keyboard shortcut displayed on the button, which will
vary by operating system) to have the Initializr generate the project and download it
as a zip file. Then you can unzip the project and load it in whatever IDE or editor
you choose.

Figure A.16 Searching for dependencies

472 APPENDIX Bootstrapping Spring applications
Before clicking Generate Project, you can get a sneak peak of the project by clicking
Explore. This will pull up a dialog with a project explorer, much like the one shown in
figure A.18.

 The project’s build specification (either a Maven pom.xml file or Gradle build.gra-
dle file) will be shown first. By clicking on items in the tree on the left, you can see
what other artifacts will be included in the project.

A.5 Initializing a project from the command line
The IDE and browser-based user interfaces for the Spring Initializr are probably the
most common way that you’ll bootstrap your projects. They’re all just clients of a
REST service offered by the Initializr application. In some special cases (e.g., in a
scripted scenario), you might find it useful to consume the Initializr service directly
from the command line.

Figure A.17 Selecting dependencies

473Initializing a project from the command line
You can consume the API in the following two ways:

■ Using the curl command (or some similar command-line REST client command)
■ Using the Spring Boot command-line interface (aka, Spring Boot CLI)

Let’s look at these options, starting with the curl command.

curl and the Initializr API

The simplest way to bootstrap a Spring project with curl is to consume the API like this:

% curl https:/ /start.spring.io/starter.zip -o demo.zip

In this case, you’re requesting the /starter.zip endpoint from the Initializr, which
will generate a Spring project and download it as a zip file. The generated project
will be Maven built and will have no dependencies other than the base Spring Boot

Figure A.18 The full version of the Initializr user interface

474 APPENDIX Bootstrapping Spring applications
starter dependency. All project information in the project’s pom.xml file will be set
to default values.

 If you don’t specify otherwise, the name of the file will be starter.zip. But in this
case, the -o option specifies that the downloaded file should be named demo.zip.

 The publicly available Spring Initializr server is hosted at https://start.spring.io,
but if you’re using a custom Initializr, you’ll need to adapt the given URL accordingly.

 You’ll probably want to specify a few more details and dependencies beyond the
given defaults. Table A.1 lists all of the parameters (and their defaults) when consum-
ing the Spring Initializr REST service.

Table A.1 Request parameters supported by the Initializr API

Parameter Description Default value

groupId The project’s group ID, for the sake of orga-
nization in a Maven repository

com.example

artifactId The project’s artifact ID, as it would appear
in a Maven repository

demo

version The project version 0.0.1-SNAPSHOT

name The project name; also used to determine
the name of the application’s main class
(with an Application suffix)

demo

description The project description Demo project for
Spring Boot

packageName The project’s base package name com.example.demo

dependencies Dependencies to include in the project’s
build specification

The base Spring Boot starter

type The kind of project to generate: either
maven-project or gradle-project

maven-project

javaVersion The version of Java to build with 1.8

bootVersion The version of Spring Boot to build against The current GA version of
Spring Boot

language The programming language to use: java,
groovy, or kotlin

java

packaging How the project should be packaged: either
jar or war

jar

applicationName The name of the application The value of the name
parameter

baseDir The name of the base directory in the gen-
erated archive

The root directory

https://start.spring.io

475Initializing a project from the command line
You can also get this list of parameters, as well as a list of available dependencies, by
making a simple request to the base Initializr URL as follows:

% curl https:/ /start.spring.io

The dependencies parameter is the one you’ll probably find the most useful. For
example, suppose that you want to create a simple web project with Spring. The fol-
lowing command-line use of curl will produce a project zip with the web starter as a
dependency:

% curl https:/ /start.spring.io/starter.zip \
 -d dependencies=web \
 -o demo.zip

As a more complex example, suppose you wanted to develop a web application that
uses Spring Data JPA for data persistence. You also want to build it with Gradle, and
the project should be under a directory named my-dir within the zip file. And let’s
suppose that rather than just download a zip file, you want the project unpacked
into your filesystem upon download. In that case, the following command should do
the trick:

% curl https:/ /start.spring.io/starter.tgz \
 -d dependencies=web,data-jpa \
 -d type=gradle-project
 -d baseDir=my-dir | tar -xzvf -

Here, the downloaded zip file is piped to the tar command for unpacking.

Spring Boot command-line interface

The Spring Boot CLI is another option for initializing Spring applications. You can
install the Spring Boot CLI in many ways, but probably the easiest way (and my favor-
ite) is to use SDKMAN (http://sdkman.io/), as shown next:

% sdk install springboot

Once the Spring Boot CLI is installed, you can start using it to generate projects,
much like with curl. The command you’ll use is spring init. In fact, the simplest way
to use the Spring Boot CLI to generate a project is like this:

% spring init

This will result in a bare-bones Spring Boot project being downloaded in a zip file
named demo.zip. However, you’ll probably want to specify more details and depen-
dencies. Table A.2 lists all of the parameters available to the spring init command.

http://sdkman.io/

476 APPENDIX Bootstrapping Spring applications
You can also get this list of parameters, as well as a list of available dependencies, by
using the --list parameter as follows:

% spring init --list

Suppose you wish to create a web application that builds against Java 1.7. The follow-
ing command uses the --dependencies and --java parameters to make those
choices:

% spring init --dependencies=web --java-version=1.7

Or suppose you want to create a web application with Spring Data JPA for persistence,
and you’d like to use Gradle to perform the build instead of Maven. You’d use the fol-
lowing command:

% spring init --dependencies=web,jpa --type=gradle-project

Table A.2 Request parameters supported by the spring init command

Parameter Description Default value

group-id The project’s group ID, for the sake of organiza-
tion in a Maven repository

com.example

artifact-id The project’s artifact ID, as it would appear in a
Maven repository

demo

version The project version 0.0.1-SNAPSHOT

name The project name; also used to determine the
name of the application’s main class (with an
Application suffix)

demo

description The project description Demo project for
Spring Boot

package-name The project’s base package name com.example.demo

dependencies Dependencies to include in the project’s build
specification

The base Spring Boot starter

type The kind of project to generate: either maven-
project or gradle-project

maven-project

java-version The version of Java to build with 11

boot-version The version of Spring Boot to build against The current GA version of
Spring Boot

language The programming language to use: java,
groovy, or kotlin

java

packaging How the project should be packaged: either
jar or war

jar

477Building and running projects
You may also notice that many of the spring init parameters are the same as or simi-
lar to the parameters for the curl option. That said, the spring init command
doesn’t support all of the same parameters as the curl option (e.g., baseDir), and the
parameters are hyphen-delimited instead of camelCase (e.g., package-name versus
packageName).

A.6 Building and running projects
No matter how you initialize your project, you can always run the application from the
command line with the java -jar command as follows:

% java -jar demo.jar

This will even work if you decide to create a WAR file distribution instead of a JAR file,
as shown here:

% java -jar demo.war

You can also take advantage of the Spring Boot Maven and Gradle plugins to run your
application. For example, if your project is built with Maven, you can run it like this:

% mvn spring-boot:run

If, on the other hand, you’ve chosen to build your project with Gradle, you can run
your project like this:

% gradle bootRun

In either case, whether using Maven or Gradle, the build tool will first build your proj-
ect (if it hasn’t already been built) and run it.

index
A

AbstractMessageRouter bean 256
access() method 126
action attribute 41
activating profiles 158–159
ActiveMQ in Action (Snyder, Bosanac, and

Davies) 211
Actuator 388–391

configuring base path 389–390
consuming endpoints 391–408

application information 392–395
runtime metrics 405–408
viewing application activity 403–405
viewing configuration details 395–403

customizing 408–419
endpoints 417–419
health indicators 414–415
registering metrics 415–417
the /info endpoint 408–413

enabling and disabling endpoints 390–391
securing 420–421

Actuator MBeans
creating 437–440
working with 435–437

addIngredient() method 207
addIngredientsToModel() method 70
addNote() method 419
addScript() method 141
addScripts() method 141
addTaco() method 34, 348
addViewController() method 56
addViewControllers() method 56, 129
administering Spring

Admin server 427–431
environment properties 429–431

general application health and
information 428

key metrics 428–429
logging levels 431
securing 431–433

using Spring Boot Admin 424–427
creating Admin server 424–426
registering Admin clients 426–427

Admin server 427–431
creating 424–426
environment properties 429–431
general application health and information

428
key metrics 428–429
logging levels 431
securing 431–433

authenticating with Actuator 433
enabling login 432–433

aggregate root service, OrderRepository 347–353
Alert object 378
allIngredients() method 401
all operation 306
AMQP 211, 226–236

adding RabbitMQ to Spring 227–228
receiving message from RabbitMQ 232–236

handling RabbitMQ messages with
listeners 235–236

receiving messages with RabbitTemplate
232–235

sending messages with RabbitTemplate
228–232

configuring message converter 231
setting message properties 231–232

and() method 129
any() operation 306
ApiProperties object 273
479

INDEX480
APIs, reactive
consuming REST APIs reactively 325–332

deleting resources 329
exchanging requests 331–332
GETting resources 326–328
handling errors 329–331
sending resources 328–329

functional request handlers 316–320
securing reactive web APIs 333–336

configuring reactive user details service 335–336
configuring reactive web security 333–335

Spring WebFlux 309–316
overview 310–311
writing reactive controllers 312–316

testing reactive controllers 320–325
GET requests 320–323
POST requests 323–324
with live server 324–325

ApplicationArguments parameter 84
applicationConfig property 398
ApplicationRunner bean 374
applications

configuration details 395–403
autoconfiguration 396–397
bean wiring report 395–396
HTTP request mappings 400–401
inspecting environment and configuration

properties 397–400
managing logging levels 401–403

information 392–395
asking for 392
inspecting health 393–395

Spring
building and running projects 477
initializing project from command line 472–477
IntelliJ IDEA 463–464
NetBeans 465–469
Spring Tool Suite 459–462
start.spring.io 469–472

viewing activity 403–405
monitoring threads 404–405
tracing HTTP activity 403–404

args parameter 85
array type 341
<artifactId> property 447
assertOrder() method 352
asynchronous messaging

with JMS 211–226
JmsTemplate 214–222
receiving messages 222–226
setting up 211–214

with Kafka 236–242
sending messages with KafkaTemplate 238–240
setting up Spring for 237–238
writing Kafka listeners 241–242

with RabbitMQ and AMQP 226–236
adding RabbitMQ to Spring 227–228
receiving message from RabbitMQ 232–236
sending messages with RabbitTemplate 228–232

authentication 116–124
customizing user authentication 119–124
in-memory user details service 118–119

authorization code grant 190
authorization servers 192–201
authorizationServerSecurityFilterChain() bean

method 195
autoconfiguration 141–148

data source 143–144
embedded server 145
logging 146–147
overview 396–397
Spring environment abstraction 142–143
using special property values 148

automatic features
automatic application restart 24
automatic browser refresh and template cache

disable 24–25

B

base path, Actuator 389–390
base URI 327
@Bean() method 125, 141, 252, 317, 454
@Bean-annotated() method 84, 141
beans

conditionally creating with profiles 159–160
wiring report 395–396

Between operation 91
Bosanac, Dejan 211
browser refresh, automatic 24–25
BSON (Binary JSON) format 106
buffer() operation 302
buffering data 302–305
build() method 335
Builder object 409
build/libs directory 445

C

caching templates 59
Carnell, John 426
cascade attribute 89
Cassandra

reactively persisting data in 361–368
creating reactive Cassandra repositories

365–366
domain classes for 362–365
testing reactive Cassandra repositories 366–368

repositories 95–105
data modeling 98–99

INDEX 481
Cassandra, repositories (continued)
enabling Spring Data Cassandra 95–98
mapping domain types for Cassandra

persistence 99–105
writing 105

Cassandra CQL (Cassandra Query Language) 96
ccCVV property 51
ccExpiration property 51
ccNumber property 51
cf command-line tool 446
channel adapters 263–265
class attribute 54
clients

creating RSocket 372–382
fire-and-forget messages 378–379
request-response 372–375
request-stream messaging 376–377

developing 204–209
sending messages bidirectionally 379–382

Cloud Native Spring in Action (Vitale) 28
cloud profile 158
collection attribute 108
collections, creation operations from 288–290
collectList() operation 304
collectMap() operation 304
combination operations 291–295

merging 291–294
selecting first reactive type to publish 294–295

command line 472–477
curl and Initializr API 473–475
Spring Boot command-line interface 475–477

CommandLineRunner 83–85
CommandLineRunner bean 84, 159, 167, 194
@ConditionalOnMissingBean annotation 397
configuration() method 333
@Configuration-annotated class 160
@Configuration annotation 5
@Configuration class 317
configuration properties

autoconfiguration 141–148
data source 143–144
embedded server 145
logging 146–147
Spring environment abstraction 142–143
using special property values 148

creating 148–155
declaring metadata 153–155
defining holders 151–153

inspecting 397–400
with profiles 155–160

activating 158–159
conditionally creating beans with 159–160
profile-specific properties 156–157

@ConfigurationProperties-annotated class 234
@ConfigurationProperties annotation 148

ConfigurationPropertiesAutoConfiguration bean 397
configure() method 334, 420, 456
configuredLevel property 402
consumes attribute 170
container images 446–455

deploying to Kubernetes 449–451
enabling graceful shutdown 451–452
liveness and readiness 452–455

configuring probes in deployment 453–454
enabling probes 452–453
managing 454–455

contexts element 396
contribute() method 409
controllers

creating class for 34–38
testing 20–21
view controllers 54–57
writing reactive 312–316

handling input reactively 315–316
returning single values 314
RxJava types 314–315

writing RESTful controllers 164–174
deleting data from server 173–174
retrieving data from server 164–170
sending data to server 170–171
updating data on server 171–173

convert() method 43
convertAndSend() method 215
Converter interface 43
converters, message

configuring with RabbitTemplate 231
JmsTemplate

before sending 218–219
configuring 219–220

core Spring Framework 26
count() method 409
createdAt property 101
createdDate property 179
create keyspace command 96, 361
creation operations 287–291

from collections 288–290
from objects 287–288
generating Flux data 290–291

@CrossOrigin annotation 166
cross-site request forgery 133–134
CrudRepository interface 89, 343
curl command 402, 473
curl command-line client 391
curl option 477

D

data
buffering on reactive stream 302–305
filtering from reactive types 295–299

INDEX482
data (continued)
mapping reactive 299–302
nonrelational data

Cassandra repositories 95–105
MongoDB repositories 106–111

persisting data with Spring Data JPA 85–93
adding to project 85–86
annotating domain as entities 86–89
customizing repositories 90–93
declaring JPA repositories 89–90

persisting document data reactively 353–360
domain document types 354–356
reactive MongoDB repositories 356–357
testing reactive MongoDB repositories 357–360

reading and writing data with JDBC 62–78
adapting domain for persistence 64–65
inserting data 73–78
JdbcTemplate 65–70
schema and preloading data 70–73

RESTful controllers
deleting data from server 173–174
retrieving data from server 164–170
sending data to server 170–171
updating data on server 171–173

Spring Data JDBC 78–85
adding to build 78–79
annotating domain for persistence 81–83
preloading data with CommandLineRunner

83–85
repository interfaces 79–80

@Data annotation 32, 87
data-backed services 174–180

adjusting resource paths and relation
names 177–179

paging and sorting 179–180
@DataMongoTest annotation 359
data parameter 245
@DataR2dbcTest annotation 345
DataSource bean 141
Davies, Rob 211
DDD (domain-driven design) 71
defaultRequestChannel attribute 245
delayElements() operation 292
delaySubscription() operation 292
delete() method 184, 329
deleteAllOrders() method 135
deleteById() method 174
deleteNote() method 419
deleteOrder() method 174
DELETE request 173, 201, 400
deleting resources 184, 329
deliveryName property 82
deliveryZip property 90
dependencies 286
<dependencies> element 14

--dependencies parameter 476
dependencies parameter 475
dependencies property 396
deploying Spring

container images 446–455
deploying to Kubernetes 449–451
enabling graceful shutdown 451–452
liveness and readiness 452–455

executable JAR files 445–446
options for 444–445
WAR files 455–457

description property 154
DesignTacoController class 35
Destination bean 217
Destination object 217
dev profile 159
DI (dependency injection) 4
diagramming reactive flows 285–286
disabling endpoints 390–391
display, web applications 30–41

creating controller class 34–38
designing view 38–41
establishing domain 31–34

distinct() operation 298
<div> element 39
docker build command 446
@Document annotation 108, 354
document data 353–360

domain document types 354–356
reactive MongoDB repositories 356–357
testing reactive MongoDB repositories 357–360

domain-driven design (DDD) 71
Domain-Driven Design (Evans) 31, 71
domains

adapting for persistence 64–65
annotating as entities 86–89
annotating for persistence 81–83
entities for R2DBC 339–343
establishing 31–34
for Cassandra persistence 99–105, 362–365
mapping MongoDB repositories to

documents 107–110
doTransform() method 272
DSL configuration 249–251

E

effectiveLevel property 402
email integration flow 267–274
EmailOrder class 272
EmailOrder object 272
EmailProperties class 268
EmailToOrderTransformer class 270
enabling endpoints 390–391
EndpointRequest.toAnyEndpoint() method 421

INDEX 483
endpoints 391–408
application activity 403–405

monitoring threads 404–405
tracing HTTP activity 403–404

application information 392–395
asking for 392
inspecting application health 393–395

configuration details 395–403
autoconfiguration 396–397
bean wiring report 395–396
HTTP request mappings 400–401
inspecting environment and configuration

properties 397–400
managing logging levels 401–403

customizing 417–419
enabling and disabling 390–391
modules 265–267
runtime metrics 405–408
the /info endpoint 408–413

build information 410–411
Git commit information 411–413
InfoContributor 408–410

Enterprise Integration Patterns (Hohpe and Woolf)
244

environment properties 397–400
Equals operation 91
errors 54, 329–331
Evans, Eric 31, 71
event looping 309
exception tag 408
exchangeToFlux() method 332
exchangeToMono() method 331
exchanging requests 331–332
expectBodyList() method 322
Expert One-on-One J2EE Design and Development

(Johnson) 3

F

failOnNoGitDirectory property 411
fields property 54
FIFO (first in, first out) 252
filename parameter 245
Files type 250
FileWriterGateway interface 251
FileWritingMessageHandler bean 249
filter() method 254
filter() operation 298
@Filter annotation 254
filterChain() method 125
filtering data 295–299
filters 253–254
final property 32
findAll() method 70, 166, 207, 312, 347
findById() method 68, 169, 343

findBySlug() method 345
findByUsername() method 121
findByUserOrderByPlacedAtDesc() method

149
fire-and-forget messages 378–379
firstWithSignal() operation 294
flatMap() operation 299, 320, 346
Flux data 290–291
force attribute 87
forgery, cross-site request 133–134
<form> element 41, 134
forms

processing submissions 41–49
validating form input 49–54

declaring validation rules 50–52
displaying validation errors 54
performing validation at form binding

52–54
frameworkless framework 25
from() method 264
fromArray() method 289, 382
fromIterable() method 289
Functional Programming in Java (Saumont) 281
functional request handlers 316–320

G

Gamov, Viktor 237
gateways 262–263
GeneratedKeyHolder type 74
GenericHandler interface 273
GenericSelector interface 254
GenericTransformer interface 255
GET() method 317
get() method 169
getAuthorities() method 121
getContent() method 312
getForEntity() method 183
getForObject() method 183, 326
getImapUrl() method 270
@GetMapping-annotated() method 173
@GetMapping annotation 42, 166
getMessageConverter() method 229
GET requests 18, 35, 37–38, 123, 164, 319–323,

389, 429, 454
getTacoCount() method 439
GETting resources 182–183, 326–328

making requests with base URI 327
timing out on long-running requests 328

Git commit information 411–413
graceful shutdown, enabling 451–452
GratuityIn class 380
GratuityOut class 380
gratuity property 380
Grokking Functional Programming (Plachta) 281

INDEX484
H

H2 Console 25
handle() method 241, 273
handleGreeting() method 373
.hasAuthority() method 202
hasErrors() method 53
hasRole() method 126
@Header annotation 245
HealthIndicator interface 414
health indicators 414–415
helloRouterFunction() method 318
Hohpe, Gregor 244
holders, configuration property 151–153
home() method 18
homepages 19–20
HTTP

request mappings 400–401
tracing activity 403–404

HttpSecurity object 125, 334
HttpStatus object 331

I

@Id annotation 82, 108
id field 64
id parameter 169
@Id property 109
id property 76, 100, 184
if statement 310
if/then blocks 49
--imageName parameter 448
 tag 19
@ImportResource annotation 247
import statement 25
@InboundChannelAdapter annotation 264
increment() method 439
info.contact.email property 392
info.contact.phone property 392
InfoContributor 408–410
/info endpoint 408–413

build information 410–411
Git commit information 411–413
InfoContributor 408–410

Ingredient class 31, 64, 99, 339
Ingredient data 66
Ingredient entity 177
ingredientId parameter 182
Ingredient object 64, 182, 326, 340
IngredientRepository.findById() method 70
IngredientRepository interface 66, 111, 177, 356
ingredientsController bean 396
IngredientUDT class 102, 363
initializing applications 6–17

examining project structure 11–17

bootstrapping application 15–16
build specification 12–15
testing application 16–17

with Spring Tool Suite 7–11
in-memory user details service 118–119
<input> element 39
inputChannel attribute 253
insert() method 111
insert query 75
integration flow 244–251

configuring in Java 247–249
using DSL configuration 249–251
with XML 246–247

IntelliJ IDEA 463–464
interfaces, MongoDB repositories 111
interval() method 291
int-file namespace 247
InventoryService bean 5
is* method 121

J

JAR files, building executable 445–446
Java, configuring integration flow in 247–249
java -jar command 477
Java Message Service. See JMS
--java parameter 476
javax.persistence package 87
JDBC (Java Database Connectivity) 61

reading and writing data with 62–78
adapting domain for persistence 64–65
inserting data 73–78
JdbcTemplate 65–70
schema and preloading data 70–73

Spring Data JDBC 78–85
adding to build 78–79
annotating domain for persistence 81–83
preloading data with CommandLineRunner

83–85
repository interfaces 79–80

JdbcIngredientRepository bean 67
JdbcTemplate 65–70

defining JDBC repositories 66–68
inserting rows 68–70

JMS (Java Message Service) 211–226
JmsTemplate 214–222

configuring message converter 219–220
converting messages before sending 218–219
postprocessing messages 220–222

receiving messages 222–226
declaring message listeners 224–226
with JmsTemplate 222–224

setting up 211–214
@JmsListener annotation 225
JmsTemplate() method 228

INDEX 485
JmsTemplatesConvertAndSend() method 218
JMX

Actuator MBeans
creating 437–440
working with 435–437

sending notifications 440–442
JNDI (Java Naming and Directory Interface)

144
Johnson, Rod 3
json() method 322
just() method 287
JWK (JSON Web Key) 196
JWT (JSON Web Token) 191

K

Kafka 236–242
sending messages with KafkaTemplate 238–240
setting up Spring for 237–238
writing Kafka listeners 241–242

Kafka in Action (Scott, Gamov, and Klein) 237
@KafkaListener annotation 241
Klein, Dave 237
kubectl command-line tool 450
kubectl port-forward command 451
Kubernetes, deploying to 449–451
Kubernetes in Action, 2nd Edition (Lukša) 449

L

LineItem object 259
lineItemSplitter() method 259
ListBodySpec object 323
listeners

declaring for JMS 224–226
handling RabbitMQ messages with 235–236
writing Kafka 241–242

--list parameter 476
List<Taco> property 348
liveness and readiness 452–455

configuring probes in deployment 453–454
enabling probes 452–453
managing 454–455

live servers 324–325
loadUserByUsername() method 118
log() operation 303
Logger object 45
loggers element 402
logging 401–403
logging.file.name property 147
logging.file.path property 147
logging.level.tacos property 156
logic operations 305–307
login pages 128–130
long parameter 233

long-running requests 328
Lukša, Marko 449

M

main() method 16
management.endpoint.health.show-details

property 393
management.endpoints.web.exposure.include

property 390
management.endpoint.web.base-path

property 389
management.info.git.mode property 412
@ManyToOne annotation 137
map() function 373
map() method 349
map() operation 284, 336, 350
mapping

HTTP request 400–401
reactive data 299–302

mapRowToIngredient() method 68
matches() method 117
memory, in-memory user details service 118–119
mergeWith() method 292
mergeWith() operation 291
merging reactive types 291–294
message attribute 52
message channels 252–253
MessageHandler bean 261
MessageHandler interface 262
@MessageMapping annotation 373
Message object 272
MessageProperties object 232
messaging

fire-and-forget messages 378–379
request-stream messaging 376–377
sending bidirectionally 379–382
with JMS 211–226

JmsTemplate 214–222
receiving messages 222–226
setting up 211–214

with Kafka 236–242
sending messages with KafkaTemplate 238–240
setting up Spring for 237–238
writing Kafka listeners 241–242

with RabbitMQ and AMQP 226–236
adding RabbitMQ to Spring 227–228
receiving message from RabbitMQ 232–236
sending messages with RabbitTemplate 228–232

metadata, configuration property 153–155
method-level security 134–136
method tag 408
metrics

registering 415–417
runtime 405–408

INDEX486
microservices 28
MockMvc object 21
Model object 37
MongoDB

persisting document data reactively with
353–360

domain document types 354–356
reactive MongoDB repositories 356–357
testing reactive MongoDB repositories

357–360
repositories 106–111

enabling Spring Data MongoDB 106–107
mapping domain types to documents

107–110
writing interfaces 111

MongoTemplate bean 397
monitoring Spring

Actuator MBeans
creating 437–440
working with 435–437

sending notifications 440–442
Mono.just() method 349
Mono objects 284
Mono<String> parameter 373
Mono type 370

N

name property 39
NetBeans 465–469
nonrelational data

Cassandra repositories 95–105
Cassandra data modeling 98–99
enabling Spring Data Cassandra 95–98
mapping domain types for Cassandra

persistence 99–105
writing 105

MongoDB repositories 106–111
enabling Spring Data MongoDB 106–107
mapping domain types to documents 107–110
writing interfaces 111

@NotBlank annotation 51
notes() method 418
NotesEndpoint class 418
Notification object 440
NotificationPublisherAware interface 440

O

OAuth 2 187–192
oauth2ResourceServer() method 202
objects, creation operations from 287–288
OIDC (OpenID Connect) 131
onAfterCreate() method 416, 439
onNext() method 283

-o option 474
order() method 43
@Order annotation 195
OrderController class 47
orderForm() method 45
OrderMessagingService interface 216
OrderProps bean 151
OrderProps class 151
OrderRepository aggregate root service 347–353
OrderRepository interface 73, 111
ordersForUser() controller method 149
OrderSplitter bean 258
org.springframework.data.annotation package 87
origin field 399
origins attribute 166

P

<p> element 38
<packaging> element 456
Page object 312
page parameter 179
PageRequest object 149
pageSize property 150
paging 179–180
<parent> element 14
PasswordEncoder bean 117
PATCH command 171
patchOrder() method 172
path attribute 170
pathMatchers() method 335
@PathVariable annotation 374
@Pattern annotation 52
permitAll() method 126
persisting data

adapting domain for 64–65
mapping domain types for Cassandra 99–105
reactively

document data with MongoDB 353–360
in Cassandra 361–368
R2DBC (Reactive Relational Database

Connectivity) 338–353
with Spring Data JPA 85–93

adding to project 85–86
annotating domain as entities 86–89
customizing repositories 90–93
declaring JPA repositories 89–90

placedAt property 149
Płachta, Michał 281
Player object 300
pollRate property 270
post() method 328
@PostAuthorize annotation 136
postForObject() method 184
POSTing resource data 184–185

INDEX 487
postprocessing messages 220–222
postProcessMessage() method 232
POST requests 41, 133, 167, 201, 323–324, 399
postTaco() method 170, 319
@PreAuthorize annotation 135
prefix attribute 268
preloading data 70–73
private helper method 208
private method 272
processOrder() method 47, 78, 137
Processor interface 283
processPayload() method 273
processRegistration() method 124
processTaco() method 42
prod profile 157
produces attribute 166
ProductService bean 5
@Profile annotation 159
profiles 155–160

activating 158–159
conditionally creating beans with 159–160
profile-specific properties 156–157

project structure 11–17
bootstrapping application 15–16
build specification 12–15
testing application 16–17

property field 399
propertySources field 398
provider property 205
publish() method 455
Publisher interface 282
publishing, reactive types and 294–295
pull model 222
push model 222
put() method 183
PUT command 171
putOrder() method 172
PUTting resources 183–184

Q

qa profile 159
query() method 68
QueueChannel bean 253

R

R2DBC (Reactive Relational Database
Connectivity) 338–353

domain entities for 339–343
OrderRepository aggregate root service 347–353
reactive repositories 343–345
testing repositories 345–347

RabbitMQ 226–236
adding to Spring 227–228

receiving message from 232–236
messages with listeners 235–236
with RabbitTemplate 232–235

sending messages with RabbitTemplate 228–232
configuring message converter 231
setting message properties 231–232

RabbitMQ in Action (Videla and Williams) 227
RabbitMQ in Depth (Roy) 227
RabbitTemplate bean 227
RabbitTemplate.receive() method 232
range() method 290
reactive APIs

consuming REST APIs reactively 325–332
deleting resources 329
exchanging requests 331–332
GETting resources 326–328
handling errors 329–331
sending resources 328–329

functional request handlers 316–320
securing reactive web APIs 333–336

configuring reactive user details service
335–336

configuring reactive web security 333–335
Spring WebFlux 309–316

overview 310–311
writing reactive controllers 312–316

testing reactive controllers 320–325
GET requests 320–323
POST requests 323–324
with live server 324–325

reactively persisting data
document data with MongoDB 353–360

domain document types 354–356
reactive MongoDB repositories 356–357
testing reactive MongoDB repositories

357–360
in Cassandra 361–368

creating reactive Cassandra repositories
365–366

domain classes for 362–365
testing reactive Cassandra repositories 366–368

R2DBC 338–353
domain entities for 339–343
OrderRepository aggregate root service

347–353
reactive repositories 343–345
testing repositories 345–347

reactive operations 287–307
combining reactive types 291–295

merging 291–294
selecting first reactive type to publish 294–295

creating reactive types 287–291
from collections 288–290
from objects 287–288
generating Flux data 290–291

INDEX488
reactive operations (continued)
logic operations on reactive types 305–307
transforming reactive streams 295–305

buffering data on reactive stream 302–305
filtering data from reactive types 295–299
mapping reactive data 299–302

reactive programming 280–283
Reactive Relational Database Connectivity. See

R2DBC
Reactive Streams 281–283
Reactor

adding dependencies 286
diagramming reactive flows 285–286
reactive operations 287–307

combining reactive types 291–295
creating reactive types 287–291
logic operations on reactive types 305–307
transforming reactive streams 295–305

reactive programming 280–283
receive() method 222
receiveAndConvert() method 223
receiving messages

from JMS 222–226
declaring message listeners 224–226
with JmsTemplate 222–224

from RabbitMQ 232–236
handling RabbitMQ messages with

listeners 235–236
with RabbitTemplate 232–235

recents() method 319
recentTacos() method 166, 314
RegisteredClientRepository interface 195
registerForm() method 123
RegistrationController class 122
RegistrationForm object 124
relation names 177–179
replicas property 450
repositories

customizing 90–93
declaring JPA 89–90
defining JDBC 66–68
interfaces with Spring Data JDBC 79–80
reactive

Cassandra 365–368
MongoDB 343–347

Repository interface 79
@RequestBody annotation 170
@RequestMapping annotation 36, 166
request-response servers 372–375
requests

exchanging 331–332
GET requests 320–323
GETting resources

making requests with base URI 327
timing out on long-running requests 328

HTTP request mappings 400–401
POST requests 323–324
request-stream messaging 376–377

@RequestScope annotation 208
ResourceDatabasePopulator objects 343
resource paths 177–179
resource property 396
resource servers 201–204
ResponseEntity object 166
REST

consuming 180–185
DELETEing resources 184
GETting resources 182–183
POSTing resource data 184–185
PUTting resources 183–184

consuming REST APIs reactively 325–332
deleting resources 329
exchanging requests 331–332
GETting resources 326–328
handling errors 329–331
sending resources 328–329

enabling data-backed services 174–180
adjusting resource paths and relation

names 177–179
paging and sorting 179–180

securing
creating authorization server 192–201
developing client 204–209
OAuth 2 187–192
securing API with resource server 201–204

writing RESTful controllers 164–174
deleting data from server 173–174
retrieving data from server 164–170
sending data to server 170–171
updating data on server 171–173

restart, automatic application 24
@RestController-annotated classes 175
@RestController annotation 165
@RestResource annotation 179
RestTemplate methods 184
retrieve() method 326
rootProject.name property 445
route() method 317
routerFunction() method 319
routers 256–257
rows, JdbcTemplate 68–70
Roy, Gavin 227
RSocket

creating server and client 372–382
fire-and-forget messages 378–379
request-response 372–375
request-stream messaging 376–377
sending messages bidirectionally 379–382

overview 370–372
transporting over WebSocket 382–383

INDEX 489
run() method 16, 83
RxJava types 314–315

S

Sanchez, Illary Huaylupo 426
Saumont, Pierre-Yves 281
save() method 68, 171, 315, 346
saveAll() method 315, 349
saveIngredientRefs() method 76
saveTaco() method 76
schema, with JDBC 70–73
Scott, Dylan 237
security

Actuator 420–421
reactive web APIs 333–336

configuring reactive user details service
335–336

configuring reactive web security 333–335
REST

creating authorization server 192–201
developing client 204–209
OAuth 2 187–192
securing API with resource server 201–204

Spring
applying method-level security 134–136
configuring authentication 116–124
enabling Spring Security 114–116
knowing user 136–139

web requests 125–134
creating custom login page 128–130
enabling third-party authentication 131–133
overview 125–128
preventing cross-site request forgery 133–134

SecurityConfig class 201
SecurityFilterChain bean 125, 204
securityWebFilterChain() method 334
send() method 215
sending messages

bidirectionally 379–382
with KafkaTemplate 238–240
with RabbitTemplate 228–232

configuring message converter 231
setting message properties 231–232

sending resources 328–329
sendNotification() method 440
sendOrder() method 216
Serializable type 110
ServerHttpSecurity object 334
server.port property 145, 399
servers

creating authorization servers 192–201
creating RSocket 372–382

fire-and-forget messages 378–379
request-response 372–375

request-stream messaging 376–377
sending messages bidirectionally 379–382

deleting data from 173–174
retrieving data from 164–170
securing API with resource server 201–204
sending data to 170–171
testing reactive controllers with live 324–325
updating data on 171–173

server.shutdown property 451
server.ssl.key-store-password property 145
server.ssl.key-store property 145
@ServiceActivator annotation 253
service activators 260–262
@SessionAttributes annotation 38
setAlert() method 379
setNotificationPublisher() method 440
setup() method 352
shouldReturnRecentTacos() method 321
shouldSaveAndFetchIngredients() method 346
shouldSaveAndFetchOrders() method 360
showDesignForm() method 37
size parameter 179
skip() operation 295
@Slf4j annotation 45
Snyder, Bruce 211
sorting 179–180
sort parameter 179
source property 221
sources() method 456
 element 39
SpEL (Spring Expression Language) 246
splitters 257–260
Spring

adding RabbitMQ to 227–228
administering

measures and metrics 427–431
securing Admin server 431–433
using Spring Boot Admin 424–427

applications
building and running projects 477
initializing project from command line

472–477
IntelliJ IDEA 463–464
NetBeans 465–469
Spring Tool Suite 459–462
start.spring.io 469–472

applying method-level security 134–136
configuring authentication 116–124

customizing user authentication 119–124
in-memory user details service 118–119

deploying
container images 446–455
executable JAR files 445–446
options for 444–445
WAR files 455–457

INDEX490
Spring (continued)
enabling Spring Security 114–116
initializing application 6–17

examining project structure 11–17
with Spring Tool Suite 7–11

knowing user 136–139
landscape 26–28

core Spring Framework 26
Spring Boot 26–27
Spring Cloud 28
Spring Data 27
Spring Integration and Spring Batch 27–28
Spring Native 28
Spring Security 27

monitoring
creating Actuator MBeans 437–440
sending notifications 440–442
working with Actuator MBeans 435–437

overview 4–6
securing web requests 125–134

creating custom login page 128–130
enabling third-party authentication 131–133
overview 125–128
preventing cross-site request forgery

133–134
setting up for Kafka 237–238
writing application 17–26

building and running 21–23
handling web requests 18–19
homepages 19–20
Spring Boot DevTools 23–25
testing controller 20–21

spring.activemq.broker-url property 213
spring.activemq.in-memory property 214
Spring application context 4
spring.application.name property 426
spring.jms.template.default-destination

property 217
Spring Batch 27–28
Spring Boot 26–27
Spring Boot Actuator 388–391

configuring base path 389–390
consuming endpoints 391–408

application information 392–395
runtime metrics 405–408
viewing application activity 403–405
viewing configuration details 395–403

customizing 408–419
endpoints 417–419
health indicators 414–415
registering metrics 415–417
the /info endpoint 408–413

enabling and disabling endpoints 390–391
securing 420–421

spring.boot.admin.client.password property 433

spring.boot.admin.client.url property 426
spring.boot.admin.client.username property 433
@SpringBootApplication annotation 15
Spring Boot CLI (command-line interface) 27
@SpringBootConfiguration-annotated class 352
Spring Boot DevTools 23–25

automatic application restart 24
automatic browser refresh and template cache

disable 24–25
built-in H2 console 25

@SpringBootTest annotation 17
Spring Cloud 28
Spring Data 27
Spring Data Cassandra 95–98
spring.data.cassandra.contact-points property 97
spring.data.cassandra.keyspace-name property 97
spring.data.cassandra.local-datacenter

property 97
spring.data.cassandra.password property 98
spring.data.cassandra.port property 97
spring.data.cassandra.username property 98
Spring Data JDBC 78–85

adding to build 78–79
annotating domain for persistence 81–83
preloading data with CommandLineRunner

83–85
repository interfaces 79–80

Spring Data JPA 85–93
adding to project 85–86
annotating domain as entities 86–89
customizing repositories 90–93
declaring JPA repositories 89–90

Spring Data MongoDB 106–107
spring.data.rest.base-path property 176
spring.datasource.data property 144
spring.datasource.driver-class-name property 144
spring.datasource.generate-unique-name

property 65
spring.datasource.jndi-name property 144
spring.datasource.name property 65
spring.datasource.schema property 144
spring init command 475
Spring Integration 27–28

creating email integration flow 267–274
declaring integration flow 244–251

configuring in Java 247–249
using DSL configuration 249–251
with XML 246–247

landscape 251–267
channel adapters 263–265
endpoint modules 265–267
filters 253–254
gateways 262–263
message channels 252–253
routers 256–257

INDEX 491
Spring Integration, landscape (continued)
service activators 260–262
splitters 257–260
transformers 254–255

spring.kafka.bootstrap-servers property 238
spring.kafka.template.default-topic property

240
spring.lifecycle.timeout-per-shutdown-phase

property 452
spring.main.web-application-type property 274
Spring Microservices in Action, 2nd Edition (Carnell

and Sanchez) 426
Spring MVC 311
Spring Native 28
spring.profiles.active property 158
spring.profiles property 157
spring.rabbitmq.template.exchange property

230
spring.rabbitmq.template.receive-timeout

property 234
spring.rabbitmq.template.routing-key property

230
spring.rsocket.server.port property 374
spring.rsocket.server.transport property 383
Spring Security 27, 114–116
Spring Tool Suite 7–11, 459–462
Spring WebFlux 309–316

overview 310–311
writing reactive controllers 312–316

handling input reactively 315–316
returning single values 314
RxJava types 314–315

start.spring.io 469–472
StockQuote class 376
streams

request-stream messaging 376–377
transforming reactive streams 295–305

buffering data on reactive stream 302–305
filtering data from reactive types 295–299
mapping reactive data 299–302

String array 300
String parameter 208, 322, 373
String property 141
String value 254
String varargs 84
submissions, form 41–49
subscribe() method 288, 375
Subscriber interface 282
Subscription object 282
systemEnvironment property source 399

T

@Table annotation 101
Taco array 323

tacoById() method 314
Taco class 34, 64, 100, 178, 341
TacoCloudApplication class 15, 56, 456
TacoCloudApplicationTests class 21
tacocloud.ingredients package 402
TacoCounter class 440
Taco domain class 33
Taco entity 177
Taco entity class 340
tacoIds property 348
TacoMetrics bean 415
Taco object 170, 315, 341, 439
TacoOrderAggregateService class 348
TacoOrder class 34, 64, 103, 137, 220, 342
tacoOrderEmailFlow() method 270
TacoOrder entity 177
TacoOrder object 136, 221, 272
taco.orders.pageSize property 150
TacoOrder type 220
Taco parameter 170
TacoRepository.findAllById() method 350
TacoRepository interface 177
tacos.ingredients package 437
tacos package 156
tacos property 348
TacoUDT class 365
tag request attribute 407
take() operation 291, 312
target directory 445
template cache disable, automatic 24–25
testHomePage() method 21
testing reactive controllers 320–325

GET requests 320–323
POST requests 323–324
with live server 324–325

testTaco() method 321
th:action attribute 134
th:each attribute 39
th:errors attribute 54
th:field attribute 39
th:if attribute 54
th:src attribute 19
third-party authentication 131–133
thread activity 404–405
Thymeleaf starter 25
timeout() method 328
toRoman() method 255
toUser() method 124
toUserDetails() method 336
tracing HTTP activity 403–404
transform() method 255
transformation operations 295–305

buffering data on reactive stream 302–305
filtering data from reactive types 295–299
mapping reactive data 299–302

INDEX492
@Transformer annotation 255
transformerFlow() method 255
Transformer interface 255
transformers 254–255
@Transient annotation 348
_typeId property 220

U

update() method 68
uppercase() method 263
UpperCaseGateway interface 263
URI, requests with 327
URI parameter 183
uri tag 407
url command-line client 188
User class 119
UserDetails interface 120
UserDetails object 118, 335
userDetailsService() method 122
UserDetailsService bean 118, 194
UserDetailsService interface 118
user-info-uri property 206
UserRepository.findByUsername() method

336
UserRepository object 335
users

configuring authentication 119–124
creating user details service 121–122
defining user domain and persistence

119–121
in-memory user details service 118–119
registering users 122–124

configuring reactive user details service
335–336

security and knowing 136–139
User type 120

V

@Valid annotation 52
validating form input 49–54

declaring validation rules 50–52
displaying validation errors 54
performing validation at form binding 52–54

value attribute 39
<version> element 286
<version> property 447
version property 445
Videla, Alvaro 227
view controllers 54–57
view template library 57–59
Vitale, Thomas 28

W

WAR files, building and deploying 455–457
war plugin 457
web APIs, reactive 333–336

configuring reactive user details service 335–336
configuring reactive web security 333–335

web applications
choosing view template library 57–59
displaying information 30–41

creating controller class 34–38
designing view 38–41
establishing domain 31–34

processing form submission 41–49
validating form input 49–54

declaring validation rules 50–52
displaying validation errors 54
performing validation at form binding 52–54

working with view controllers 54–57
WebClient bean 327
webEnvironment attribute 325
WebMvcConfigurer interface 56
@WebMvcTest annotation 56
web requests 18–19, 125–134

creating custom login page 128–130
enabling third-party authentication 131–133
overview 125–128
preventing cross-site request forgery 133–134

WebSocket 382–383
websocket() method 383
Web starter 25
WebTestClient() method 323
Williams, Jason J. W. 227
Woolf, Bobby 244
writeToFile() method 245
writing applications 17–26

building and running 21–23
handling web requests 18–19
homepages 19–20
Spring Boot DevTools 23–25

automatic application restart 24
automatic browser refresh and template cache

disable 24–25
built-in H2 console 25

testing controller 20–21

X

XML 246–247

Z

zip() operation 293

Craig Walls

ISBN: 978-1-61729-757-1

S
pring is required knowledge for Java developers! Why?
Th is powerful framework eliminates a lot of the tedious
confi guration and repetitive coding tasks, making it easy

to build enterprise-ready, production-quality software. Th e
latest updates bring huge productivity boosts to microservices,
reactive development, and other modern application designs.
It’s no wonder over half of all Java developers use Spring.

Spring in Action, Sixth Edition is a comprehensive guide to
Spring’s core features, all explained in Craig Walls’ famously
clear style. You’ll put Spring into action as you build a com-
plete database-backed web app step-by-step. Th is new edition
covers both Spring fundamentals and new features such as
reactive fl ows, Kubernetes integration, and RSocket. Whether
you’re new to Spring or leveling up to Spring 5.3, make this
classic bestseller your bible!

What’s Inside
● Relational and NoSQL databases
● Integrating via RSocket and REST-based services
● Reactive programming techniques
● Deploying applications to traditional servers and
 containers

For beginning to intermediate Java developers.

Craig Walls is an engineer at VMware, a member of the Spring
engineering team, a popular author, and a frequent conference
speaker.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Spring IN ACTION Sixth Edition

SPRING/JAVA

M A N N I N G

“Th e only book you’ll ever
need to learn and master the

Spring ecosystem. Th is update
 is a must-read.”

—Pierre-Michel Ansel, 8x8

“Th e best resource for modern
Spring development.”

—Becky Huett, Big Shovel Labs

“Th e defi nitive guide for
developers wanting to build

reliable, fault-tolerant,
and scalable cloud-native

 applications using Spring.”
—David Witherspoon, Parsons

“Spring is still thriving!
Get this latest edition to keep

growing with it.”—Kevin Liao, Sotheby’s

“Your fast track for Spring
 Boot development.”—David Torrubia Iñigo

MÁSMÓVIL Group

See first page

	Spring in Action, Sixth Edition
	From the fifth edition of Spring in Action by Craig Walls
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Book forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—Foundational Spring
	1 Getting started with Spring
	1.1 What is Spring?
	1.2 Initializing a Spring application
	1.2.1 Initializing a Spring project with Spring Tool Suite
	1.2.2 Examining the Spring project structure

	1.3 Writing a Spring application
	1.3.1 Handling web requests
	1.3.2 Defining the view
	1.3.3 Testing the controller
	1.3.4 Building and running the application
	1.3.5 Getting to know Spring Boot DevTools
	1.3.6 Let’s review

	1.4 Surveying the Spring landscape
	1.4.1 The core Spring Framework
	1.4.2 Spring Boot
	1.4.3 Spring Data
	1.4.4 Spring Security
	1.4.5 Spring Integration and Spring Batch
	1.4.6 Spring Cloud
	1.4.7 Spring Native

	Summary

	2 Developing web applications
	2.1 Displaying information
	2.1.1 Establishing the domain
	2.1.2 Creating a controller class
	2.1.3 Designing the view

	2.2 Processing form submission
	2.3 Validating form input
	2.3.1 Declaring validation rules
	2.3.2 Performing validation at form binding
	2.3.3 Displaying validation errors

	2.4 Working with view controllers
	2.5 Choosing a view template library
	2.5.1 Caching templates

	Summary

	3 Working with data
	3.1 Reading and writing data with JDBC
	3.1.1 Adapting the domain for persistence
	3.1.2 Working with JdbcTemplate
	3.1.3 Defining a schema and preloading data
	3.1.4 Inserting data

	3.2 Working with Spring Data JDBC
	3.2.1 Adding Spring Data JDBC to the build
	3.2.2 Defining repository interfaces
	3.2.3 Annotating the domain for persistence
	3.2.4 Preloading data with CommandLineRunner

	3.3 Persisting data with Spring Data JPA
	3.3.1 Adding Spring Data JPA to the project
	3.3.2 Annotating the domain as entities
	3.3.3 Declaring JPA repositories
	3.3.4 Customizing repositories

	Summary

	4 Working with nonrelational data
	4.1 Working with Cassandra repositories
	4.1.1 Enabling Spring Data Cassandra
	4.1.2 Understanding Cassandra data modeling
	4.1.3 Mapping domain types for Cassandra persistence
	4.1.4 Writing Cassandra repositories

	4.2 Writing MongoDB repositories
	4.2.1 Enabling Spring Data MongoDB
	4.2.2 Mapping domain types to documents
	4.2.3 Writing MongoDB repository interfaces

	Summary

	5 Securing Spring
	5.1 Enabling Spring Security
	5.2 Configuring authentication
	5.2.1 In-memory user details service
	5.2.2 Customizing user authentication

	5.3 Securing web requests
	5.3.1 Securing requests
	5.3.2 Creating a custom login page
	5.3.3 Enabling third-party authentication
	5.3.4 Preventing cross-site request forgery

	5.4 Applying method-level security
	5.5 Knowing your user
	Summary

	6 Working with configuration properties
	6.1 Fine-tuning autoconfiguration
	6.1.1 Understanding Spring’s environment abstraction
	6.1.2 Configuring a data source
	6.1.3 Configuring the embedded server
	6.1.4 Configuring logging
	6.1.5 Using special property values

	6.2 Creating your own configuration properties
	6.2.1 Defining configuration property holders
	6.2.2 Declaring configuration property metadata

	6.3 Configuring with profiles
	6.3.1 Defining profile-specific properties
	6.3.2 Activating profiles
	6.3.3 Conditionally creating beans with profiles

	Summary

	Part 2—Integrated Spring
	7 Creating REST services
	7.1 Writing RESTful controllers
	7.1.1 Retrieving data from the server
	7.1.2 Sending data to the server
	7.1.3 Updating data on the server
	7.1.4 Deleting data from the server

	7.2 Enabling data-backed services
	7.2.1 Adjusting resource paths and relation names
	7.2.2 Paging and sorting

	7.3 Consuming REST services
	7.3.1 GETting resources
	7.3.2 PUTting resources
	7.3.3 DELETEing resources
	7.3.4 POSTing resource data

	Summary

	8 Securing REST
	8.1 Introducing OAuth 2
	8.2 Creating an authorization server
	8.3 Securing an API with a resource server
	8.4 Developing the client
	Summary

	9 Sending messages asynchronously
	9.1 Sending messages with JMS
	9.1.1 Setting up JMS
	9.1.2 Sending messages with JmsTemplate
	9.1.3 Receiving JMS messages

	9.2 Working with RabbitMQ and AMQP
	9.2.1 Adding RabbitMQ to Spring
	9.2.2 Sending messages with RabbitTemplate
	9.2.3 Receiving messages from RabbitMQ

	9.3 Messaging with Kafka
	9.3.1 Setting up Spring for Kafka messaging
	9.3.2 Sending messages with KafkaTemplate
	9.3.3 Writing Kafka listeners

	Summary

	10 Integrating Spring
	10.1 Declaring a simple integration flow
	10.1.1 Defining integration flows with XML
	10.1.2 Configuring integration flows in Java
	10.1.3 Using Spring Integration’s DSL configuration

	10.2 Surveying the Spring Integration landscape
	10.2.1 Message channels
	10.2.2 Filters
	10.2.3 Transformers
	10.2.4 Routers
	10.2.5 Splitters
	10.2.6 Service activators
	10.2.7 Gateways
	10.2.8 Channel adapters
	10.2.9 Endpoint modules

	10.3 Creating an email integration flow
	Summary

	Part 3—Reactive Spring
	11 Introducing Reactor
	11.1 Understanding reactive programming
	11.1.1 Defining Reactive Streams

	11.2 Getting started with Reactor
	11.2.1 Diagramming reactive flows
	11.2.2 Adding Reactor dependencies

	11.3 Applying common reactive operations
	11.3.1 Creating reactive types
	11.3.2 Combining reactive types
	11.3.3 Transforming and filtering reactive streams
	11.3.4 Performing logic operations on reactive types

	Summary

	12 Developing reactive APIs
	12.1 Working with Spring WebFlux
	12.1.1 Introducing Spring WebFlux
	12.1.2 Writing reactive controllers

	12.2 Defining functional request handlers
	12.3 Testing reactive controllers
	12.3.1 Testing GET requests
	12.3.2 Testing POST requests
	12.3.3 Testing with a live server

	12.4 Consuming REST APIs reactively
	12.4.1 GETting resources
	12.4.2 Sending resources
	12.4.3 Deleting resources
	12.4.4 Handling errors
	12.4.5 Exchanging requests

	12.5 Securing reactive web APIs
	12.5.1 Configuring reactive web security
	12.5.2 Configuring a reactive user details service

	Summary

	13 Persisting data reactively
	13.1 Working with R2DBC
	13.1.1 Defining domain entities for R2DBC
	13.1.2 Defining reactive repositories
	13.1.3 Testing R2DBC repositories
	13.1.4 Defining an OrderRepository aggregate root service

	13.2 Persisting document data reactively with MongoDB
	13.2.1 Defining domain document types
	13.2.2 Defining reactive MongoDB repositories
	13.2.3 Testing reactive MongoDB repositories

	13.3 Reactively persisting data in Cassandra
	13.3.1 Defining domain classes for Cassandra persistence
	13.3.2 Creating reactive Cassandra repositories
	13.3.3 Testing reactive Cassandra repositories

	Summary

	14 Working with RSocket
	14.1 Introducing RSocket
	14.2 Creating a simple RSocket server and client
	14.2.1 Working with request-response
	14.2.2 Handling request-stream messaging
	14.2.3 Sending fire-and-forget messages
	14.2.4 Sending messages bidirectionally

	14.3 Transporting RSocket over WebSocket
	Summary

	Part 4—Deployed Spring
	15 Working with Spring Boot Actuator
	15.1 Introducing Actuator
	15.1.1 Configuring Actuator’s base path
	15.1.2 Enabling and disabling Actuator endpoints

	15.2 Consuming Actuator endpoints
	15.2.1 Fetching essential application information
	15.2.2 Viewing configuration details
	15.2.3 Viewing application activity
	15.2.4 Tapping runtime metrics

	15.3 Customizing Actuator
	15.3.1 Contributing information to the /info endpoint
	15.3.2 Defining custom health indicators
	15.3.3 Registering custom metrics
	15.3.4 Creating custom endpoints

	15.4 Securing Actuator
	Summary

	16 Administering Spring
	16.1 Using Spring Boot Admin
	16.1.1 Creating an Admin server
	16.1.2 Registering Admin clients

	16.2 Exploring the Admin server
	16.2.1 Viewing general application health and information
	16.2.2 Watching key metrics
	16.2.3 Examining environment properties
	16.2.4 Viewing and setting logging levels

	16.3 Securing the Admin server
	16.3.1 Enabling login in the Admin server
	16.3.2 Authenticating with the Actuator

	Summary

	17 Monitoring Spring with JMX
	17.1 Working with Actuator MBeans
	17.2 Creating your own MBeans
	17.3 Sending notifications
	Summary

	18 Deploying Spring
	18.1 Weighing deployment options
	18.2 Building executable JAR files
	18.3 Building container images
	18.3.1 Deploying to Kubernetes
	18.3.2 Enabling graceful shutdown
	18.3.3 Working with application liveness and readiness

	18.4 Building and deploying WAR files
	18.5 The end is where we begin
	Summary

	Appendix—Bootstrapping Spring applications
	A.1 Initializing a project with Spring Tool Suite
	A.2 Initializing a project with IntelliJ IDEA
	A.3 Initializing a project with NetBeans
	A.4 Initializing a project at start.spring.io
	A.5 Initializing a project from the command line
	curl and the Initializr API
	Spring Boot command-line interface

	A.6 Building and running projects

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

